#coding:utf-8 import os import pickle import zipfile from os.path import basename import tqdm import numpy as np def read_numpy(file_path): return np.load(file_path) def load_pkl(file_path): with open(file_path, 'rb') as f: data = pickle.load(f) f.close() return data with open('../data/label_map.txt', 'r') as f: ids = [line.strip() for line in f.readlines()] def get_prob_labels(file_path): pred_meta = load_pkl(file_path) out_probs = [x['pred_score'].cpu().numpy() for x in pred_meta] out_probs = np.vstack(out_probs) # [51440, 3215] out_labels = np.argmax(out_probs, axis=1) # [51440] return out_probs, out_labels # RGB: vswin_small_rgb_prob, _ = get_prob_labels('./vswin_small_rgb/result_swin_small_rgb.pkl') vswin_base_rgb_prob, _ = get_prob_labels('./vswin_base_rgb/result_swin_base_rgb.pkl') vswin_large_rgb_prob, _ = get_prob_labels('./vswin_large_rgb/result_swin_large_rgb.pkl') rgb_prob = 0.4 * vswin_large_rgb_prob + 0.4 * vswin_base_rgb_prob + 0.2 * vswin_small_rgb_prob # Depth: vswin_small_depth_prob, _ = get_prob_labels('./vswin_small_depth/result_swin_small_depth.pkl') vswin_base_depth_prob, _ = get_prob_labels('./vswin_base_depth/result_swin_base_depth.pkl') vswin_large_depth_prob, _ = get_prob_labels('./vswin_large_depth/result_swin_large_depth.pkl') depth_prob = 0.65 * vswin_large_depth_prob + 0.35 * vswin_base_depth_prob fused_prob = rgb_prob * 0.5 + depth_prob * 0.5 # [51440. 3215] out_labels = np.argmax(fused_prob, axis=1) # [51440] ############################################ with open('./answer.txt', 'w') as f: for label in out_labels: f.write(ids[label]+'\n') f.close() csv_file_path = './answer.txt' zip_file_path = './answer.zip' with zipfile.ZipFile(zip_file_path, 'w') as zipf: zipf.write(csv_file_path, os.path.basename(csv_file_path))