henrycastillo's picture
add everything but lm eval harness
c3b20da verified
"""
FineWeb dataset (for srs pretraining)
https://huggingface.co/datasets/HuggingFaceFW/fineweb
example doc to highlight the structure of the dataset:
{
"text": "Posted by mattsmith on 20th April 2012\nStraight from...",
"id": "<urn:uuid:d853d453-196e-4488-a411-efc2b26c40d2>",
"dump": "CC-MAIN-2013-20",
"url": "http://nleastchatter.com/philliesphandom/tag/freddy-galvis/",
"date": "2013-05-18T07:24:47Z",
"file_path": "s3://commoncrawl/long.../path.../file.gz",
"language": "en",
"language_score": 0.9185474514961243,
"token_count": 594
}
"""
import os
import argparse
import multiprocessing as mp
import numpy as np
import tiktoken
# from huggingface_hub import snapshot_download
from datasets import load_dataset
from tqdm import tqdm
import argparse
import numpy as np
def write_datafile(filename, toks):
"""
Saves token data as a .bin file, for reading in C.
- First comes a header with 256 int32s
- The tokens follow, each as a uint16
"""
assert len(toks) < 2**31, "token count too large" # ~2.1B tokens
# construct the header
header = np.zeros(256, dtype=np.int32)
header[0] = 20240520 # magic
header[1] = 1 # version
header[2] = len(toks) # number of tokens after the 256*4 bytes of header (each 2 bytes as uint16)
# construct the tokens numpy array, if not already
if not isinstance(toks, np.ndarray) or not toks.dtype == np.uint16:
# validate that no token exceeds a uint16
maxtok = 2**16
assert all(0 <= t < maxtok for t in toks), "token dictionary too large for uint16"
toks_np = np.array(toks, dtype=np.uint16)
else:
toks_np = toks
# write to file
print(f"writing {len(toks):,} tokens to {filename}")
with open(filename, "wb") as f:
f.write(header.tobytes())
f.write(toks_np.tobytes())
# ------------------------------------------
parser = argparse.ArgumentParser(description="FineWeb dataset preprocessing")
parser.add_argument("-v", "--version", type=str, default="10B", help="Which version of fineweb to use 10B|100B")
parser.add_argument("-s", "--shard_size", type=int, default=10**8, help="Size of each shard in tokens")
args = parser.parse_args()
# FineWeb has a few possible subsamples available
assert args.version in ["10B", "100B"], "version must be one of 10B, 100B"
if args.version == "10B":
local_dir = "fineweb10B"
remote_name = "sample-10BT"
elif args.version == "100B":
local_dir = "fineweb100B"
remote_name = "sample-100BT"
# create the cache the local directory if it doesn't exist yet
DATA_CACHE_DIR = os.path.join(os.path.dirname(__file__), local_dir)
os.makedirs(DATA_CACHE_DIR, exist_ok=True)
# download the dataset
fw = load_dataset("HuggingFaceFW/fineweb", name=remote_name, split="train")
# init the tokenizer
enc = tiktoken.get_encoding("gpt2")
eot = enc._special_tokens['<|endoftext|>'] # end of text token
def tokenize(doc):
# tokenizes a single document and returns a numpy array of uint16 tokens
tokens = [eot] # the special <|endoftext|> token delimits all documents
tokens.extend(enc.encode_ordinary(doc["text"]))
tokens_np = np.array(tokens)
assert (0 <= tokens_np).all() and (tokens_np < 2**16).all(), "token dictionary too large for uint16"
tokens_np_uint16 = tokens_np.astype(np.uint16)
return tokens_np_uint16
# tokenize all documents and write output shards, each of shard_size tokens (last shard has remainder)
nprocs = max(1, os.cpu_count() - 2) # don't hog the entire system
with mp.Pool(nprocs) as pool:
shard_index = 0
# preallocate buffer to hold current shard
all_tokens_np = np.empty((args.shard_size,), dtype=np.uint16)
token_count = 0
progress_bar = None
for tokens in pool.imap(tokenize, fw, chunksize=16):
# is there enough space in the current shard for the new tokens?
if token_count + len(tokens) < args.shard_size:
# simply append tokens to current shard
all_tokens_np[token_count:token_count+len(tokens)] = tokens
token_count += len(tokens)
# update progress bar
if progress_bar is None:
progress_bar = tqdm(total=args.shard_size, unit="tokens", desc=f"Shard {shard_index}")
progress_bar.update(len(tokens))
else:
# write the current shard and start a new one
split = "val" if shard_index == 0 else "train"
filename = os.path.join(DATA_CACHE_DIR, f"fineweb_{split}_{shard_index:06d}.bin")
# split the document into whatever fits in this shard; the remainder goes to next one
remainder = args.shard_size - token_count
progress_bar.update(remainder)
all_tokens_np[token_count:token_count+remainder] = tokens[:remainder]
write_datafile(filename, all_tokens_np)
shard_index += 1
progress_bar = None
# populate the next shard with the leftovers of the current doc
all_tokens_np[0:len(tokens)-remainder] = tokens[remainder:]
token_count = len(tokens)-remainder
# write any remaining tokens as the last shard
if token_count != 0:
split = "val" if shard_index == 0 else "train"
filename = os.path.join(DATA_CACHE_DIR, f"fineweb_{split}_{shard_index:06d}.bin")
write_datafile(filename, all_tokens_np[:token_count])