File size: 23,230 Bytes
c3b20da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import os
import sys
with open(sys.argv[0]) as f:
    code = f.read() # read the code of this file ASAP, for logging
import uuid
import glob
import time
from dataclasses import dataclass

import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP

# -----------------------------------------------------------------------------
# Muon optimizer

def zeropower_via_svd(G, steps=None):
    U, S, V = G.svd()
    return U @ V.T

@torch.compile
def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7):
    """
    Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
    quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
    of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
    zero even beyond the point where the iteration no longer converges all the way to one everywhere
    on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
    where S' is diagonal with S_{ii}' \sim Uniform(0.5, 1.5), which turns out not to hurt model
    performance at all relative to UV^T, where USV^T = G is the SVD.
    """
    assert len(G.shape) == 2
    a, b, c = (3.4445, -4.7750,  2.0315)
    X = G.bfloat16()
    X /= (X.norm() + eps) # ensure top singular value <= 1
    if G.size(0) > G.size(1):
        X = X.T
    for _ in range(steps):
        A = X @ X.T
        B = A @ X
        X = a * X + b * B + c * A @ B
    if G.size(0) > G.size(1):
        X = X.T
    return X

zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5)

class Muon(torch.optim.Optimizer):
    """
    Muon - MomentUm Orthogonalized by Newton-schulz

    Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
    processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
    matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
    the advantage that it can be stably run in bfloat16 on the GPU.

    Some warnings:
    - This optimizer assumes that all parameters passed in are 2D.
    - It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D
    parameters; those should all be optimized by a standard method (e.g., AdamW).
    - To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions.
    - We believe it is unlikely to work well for training with small batch size.
    - We believe it may not work well for finetuning pretrained models, but we haven't tested this.
    - We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M).

    Arguments:
        lr: The learning rate used by the internal SGD.
        momentum: The momentum used by the internal SGD.
        nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
        backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5')
        backend_steps: The number of iteration steps to use in the backend, if it is iterative.
    """
    def __init__(self, params, lr=3e-4, momentum=0.95, nesterov=True, backend='newtonschulz5', backend_steps=5):
        defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps)
        super().__init__(params, defaults)

    def step(self):
        for group in self.param_groups:
            lr = group['lr']
            momentum = group['momentum']
            zeropower_backend = zeropower_backends[group['backend']]
            for p in group['params']:
                g = p.grad
                if g is None:
                    continue
                state = self.state[p]
                if 'momentum_buffer' not in state:
                    state['momentum_buffer'] = torch.zeros_like(g)
                buf = state['momentum_buffer']
                buf.mul_(momentum).add_(g)
                if group['nesterov']:
                    g = g.add(buf, alpha=momentum)
                if g.size(0) == 3 * g.size(1): # split grouped QKV parameters
                    g = torch.cat([zeropower_backend(g1, steps=group['backend_steps']) for g1 in g.split(g.size(1))])
                    scale = g.size(1)**0.5
                else:
                    g = zeropower_backend(g, steps=group['backend_steps'])
                    scale = max(g.size(0), g.size(1))**0.5 # scale to have update.square().mean() == 1
                p.data.add_(g, alpha=-lr * scale)

# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model

class Rotary(torch.nn.Module):

    def __init__(self, dim, base=10000):
        super().__init__()
        self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None

    def forward(self, x):
        seq_len = x.shape[1]
        if seq_len != self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
            freqs = torch.outer(t, self.inv_freq).to(x.device)
            self.cos_cached = freqs.cos().bfloat16()
            self.sin_cached = freqs.sin().bfloat16()
        return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]

def apply_rotary_emb(x, cos, sin):
    assert x.ndim == 4 # multihead attention
    d = x.shape[3]//2
    x1 = x[..., :d]
    x2 = x[..., d:]
    y1 = x1 * cos + x2 * sin
    y2 = x1 * (-sin) + x2 * cos
    return torch.cat([y1, y2], 3).type_as(x)

class CausalSelfAttention(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.head_dim = self.n_embd // self.n_head
        assert self.n_embd % self.n_head == 0
        self.c_q = nn.Linear(self.n_embd, self.n_embd, bias=False)
        self.c_k = nn.Linear(self.n_embd, self.n_embd, bias=False)
        self.c_v = nn.Linear(self.n_embd, self.n_embd, bias=False)
        # output projection
        self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
        self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
        self.rotary = Rotary(self.head_dim)

    def forward(self, x):
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
        q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
        k = self.c_k(x).view(B, T, self.n_head, self.head_dim)
        v = self.c_v(x).view(B, T, self.n_head, self.head_dim)
        cos, sin = self.rotary(q)
        q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
        q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977
        y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True)
        y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
        y = self.c_proj(y)
        return y

class MLP(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.c_fc    = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
        self.c_proj  = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
        self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977

    def forward(self, x):
        x = self.c_fc(x)
        x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
        x = self.c_proj(x)
        return x

class Block(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.attn = CausalSelfAttention(config)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(F.rms_norm(x, (x.size(-1),)))
        x = x + self.mlp(F.rms_norm(x, (x.size(-1),)))
        return x

# -----------------------------------------------------------------------------
# The main GPT-2 model

@dataclass
class GPTConfig:
    vocab_size : int = 50304
    n_layer : int = 12
    n_head : int = 6 # head dim 128 suggested by @Grad62304977
    n_embd : int = 768

class GPT(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.config = config

        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying

    def forward(self, idx, targets=None, return_logits=True):

        # forward the GPT model itself
        x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
        for block in self.transformer.h:
            x = block(x)
        x = F.rms_norm(x, (x.size(-1),))

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.lm_head(x)
            logits = logits.float() # use tf32/fp32 for logits
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the lm_head on the very last position
            logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
            logits = logits.float() # use tf32/fp32 for logits
            loss = None

        # there are performance reasons why not returning logits is prudent, if not needed
        if not return_logits:
            logits = None

        return logits, loss

# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader

def _peek_data_shard(filename):
    # only reads the header, returns header data
    with open(filename, "rb") as f:
        # first read the header, which is 256 int32 integers (4 bytes each)
        header = np.frombuffer(f.read(256*4), dtype=np.int32)
    if header[0] != 20240520:
        print("ERROR: magic number mismatch in the data .bin file!")
        print("---> HINT: Are you passing in a correct file with --input_bin?")
        print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
        print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
        exit(1)
    assert header[1] == 1, "unsupported version"
    ntok = header[2] # number of tokens (claimed)
    return ntok # for now just return the number of tokens

def _load_data_shard(filename):
    with open(filename, "rb") as f:
        # first read the header, which is 256 int32 integers (4 bytes each)
        header = np.frombuffer(f.read(256*4), dtype=np.int32)
        assert header[0] == 20240520, "magic number mismatch in the data .bin file"
        assert header[1] == 1, "unsupported version"
        ntok = header[2] # number of tokens (claimed)
        # the rest of it are tokens, stored as uint16
        tokens = np.frombuffer(f.read(), dtype=np.uint16)
    assert len(tokens) == ntok, "number of tokens read does not match header?"
    return tokens

class DistributedDataLoader:
    def __init__(self, filename_pattern, B, T, process_rank, num_processes):
        self.process_rank = process_rank
        self.num_processes = num_processes
        self.B = B
        self.T = T

        # glob files that match the pattern
        self.files = sorted(glob.glob(filename_pattern))
        assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"

        # load and validate all data shards, count number of tokens in total
        ntok_total = 0
        for fname in self.files:
            shard_ntok = _peek_data_shard(fname)
            assert shard_ntok >= num_processes * B * T + 1
            ntok_total += int(shard_ntok)
        self.ntok_total = ntok_total

        # kick things off
        self.reset()

    def reset(self):
        self.current_shard = 0
        self.current_position = self.process_rank * self.B * self.T
        self.tokens = _load_data_shard(self.files[self.current_shard])

    def advance(self): # advance to next data shard
        self.current_shard = (self.current_shard + 1) % len(self.files)
        self.current_position = self.process_rank * self.B * self.T
        self.tokens = _load_data_shard(self.files[self.current_shard])

    def next_batch(self):
        B = self.B
        T = self.T
        buf = self.tokens[self.current_position : self.current_position+B*T+1]
        buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
        x = (buf[:-1]).view(B, T) # inputs
        y = (buf[1:]).view(B, T) # targets
        # advance current position and load next shard if necessary
        self.current_position += B * T * self.num_processes
        if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
            self.advance()
        return x.cuda(), y.cuda()

# -----------------------------------------------------------------------------
# int main

@dataclass
class Hyperparameters:
    # data hyperparams
    input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on
    input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on
    # optimization hyperparams
    batch_size : int = 8*64 # batch size, in sequences, across all devices
    device_batch_size : int = 64 # batch size, in sequences, per device
    sequence_length : int = 1024 # sequence length, in tokens
    num_iterations : int = 5100 # number of iterations to run
    learning_rate : float = 0.0036
    warmup_iters : int = 0
    warmdown_iters : int = 1450 # number of iterations of linear warmup/warmdown for triangular or trapezoidal schedule
    weight_decay : float = 0
    # evaluation and logging hyperparams
    val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end
    val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons
    save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end
args = Hyperparameters()

# set up DDP (distributed data parallel). torchrun sets this env variable
assert torch.cuda.is_available()
dist.init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
print(f"using device: {device}")
master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc.

# convenience variables
B, T = args.device_batch_size, args.sequence_length
# calculate the number of steps to take in the val loop.
assert args.val_tokens % (B * T * ddp_world_size) == 0
val_steps = args.val_tokens // (B * T * ddp_world_size)
# calculate the steps of gradient accumulation required to attain the desired global batch size.
assert args.batch_size % (B * ddp_world_size) == 0
train_accumulation_steps = args.batch_size // (B * ddp_world_size)

# load tokens
train_loader = DistributedDataLoader(args.input_bin, B, T, ddp_rank, ddp_world_size)
val_loader = DistributedDataLoader(args.input_val_bin, B, T, ddp_rank, ddp_world_size)
if master_process:
    print(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files")
    print(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files")
x, y = train_loader.next_batch()

# there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977.
# this originates from Karpathy's experiments.
num_vocab = 50304
model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768))
model = model.cuda()
if hasattr(config, "coordinate_descent_tuning"):
    config.coordinate_descent_tuning = True # suggested by @Chillee
model = torch.compile(model)
# here we wrap model into DDP container
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module # always contains the "raw" unwrapped model
ctx = torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16)

# init the optimizer(s)
optimizer1 = torch.optim.AdamW(raw_model.lm_head.parameters(), lr=args.learning_rate, betas=(0.9, 0.95),
                               weight_decay=args.weight_decay, fused=True)
optimizer2 = Muon(raw_model.transformer.h.parameters(), lr=0.1*args.learning_rate, momentum=0.95)
optimizers = [optimizer1, optimizer2]
# learning rate decay scheduler (linear warmup and warmdown)
def get_lr(it):
    assert it <= args.num_iterations
    # 1) linear warmup for warmup_iters steps
    if it < args.warmup_iters:
        return (it+1) / args.warmup_iters
    # 2) constant lr for a while
    elif it < args.num_iterations - args.warmdown_iters:
        return 1.0
    # 3) linear warmdown
    else:
        decay_ratio = (args.num_iterations - it) / args.warmdown_iters
        return decay_ratio
schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers]

# begin logging
if master_process:
    run_id = str(uuid.uuid4())
    logdir = 'logs/%s/' % run_id
    os.makedirs(logdir, exist_ok=True)
    logfile = 'logs/%s.txt' % run_id
    # create the log file
    with open(logfile, "w") as f:
        # begin the log by printing this file (the Python code)
        f.write('='*100 + '\n')
        f.write(code)
        f.write('='*100 + '\n')
        # log information about the hardware/software environment this is running on
        # and print the full `nvidia-smi` to file
        f.write(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:\n")
        import subprocess
        result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
        f.write(f'{result.stdout}\n')
        f.write('='*100 + '\n')

training_time_ms = 0
# start the clock
torch.cuda.synchronize()
t0 = time.time()
# begin training
train_loader.reset()
for step in range(args.num_iterations + 1):
    last_step = (step == args.num_iterations)
    # This effectively ignores timing first 10 steps, which are slower for weird reasons.
    # Alternately, and slightly more correctly in terms of benchmarking, we could do 10
    # steps with dummy data first, and then re-initialize the model and reset the loader.
    if step == 10:
        training_time_ms = 0
        t0 = time.time()
    timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val

    # once in a while evaluate the validation dataset
    if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)):
        # stop the clock
        torch.cuda.synchronize()
        training_time_ms += 1000 * (time.time() - t0)
        # run validation batches
        model.eval()
        val_loader.reset()
        val_loss = 0.0
        for _ in range(val_steps):
            x_val, y_val = val_loader.next_batch()
            with ctx: # of course, we'd like to use no_grad() here too, but that creates a torch.compile error for some reason
                _, loss = model(x_val, y_val, return_logits=False)
                val_loss += loss.detach()
                del loss
        dist.all_reduce(val_loss, op=dist.ReduceOp.AVG)
        val_loss /= val_steps
        # log val loss to console and to logfile
        if master_process:
            print(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms')
            with open(logfile, "a") as f:
                f.write(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms\n')
        # start the clock again
        torch.cuda.synchronize()
        t0 = time.time()

    if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)):
        # stop the clock
        torch.cuda.synchronize()
        training_time_ms += 1000 * (time.time() - t0)
        # save the state of the training process
        log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers])
        torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step))
        # start the clock again
        torch.cuda.synchronize()
        t0 = time.time()

    # bit confusing: we want to make sure to eval on 0th iteration
    # but also after the very last iteration. so we loop for step <= num_iterations
    # instead of just < num_iterations (one extra due to <=), only to do
    # the validation/sampling one last time, and then we break right here as we're done.
    if last_step:
        break

    # --------------- TRAINING SECTION BEGIN -----------------
    model.train()
    for i in range(1, train_accumulation_steps+1):
        # forward pass
        with ctx:
            _, loss = model(x, y, return_logits=False)
            train_loss = loss.detach()
        # advance the dataset for the next batch
        x, y = train_loader.next_batch()
        # backward pass
        if i < train_accumulation_steps:
            with model.no_sync(): # there's no need to sync gradients every accumulation step
                loss.backward()
        else:
            loss.backward() # just sync on the last step
    for p in model.parameters():
        p.grad /= train_accumulation_steps
    # step the optimizers and schedulers
    for opt, sched in zip(optimizers, schedulers):
        opt.step()
        sched.step()
    # null the gradients
    model.zero_grad(set_to_none=True)
    # --------------- TRAINING SECTION END -------------------
    # everything that follows now is just diagnostics, prints, logging, etc.

    #dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower
    if master_process:
        approx_time = training_time_ms + 1000 * (time.time() - t0)
        print(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms")
        with open(logfile, "a") as f:
            f.write(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms\n")

if master_process:
    print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")

# -------------------------------------------------------------------------
# clean up nice
dist.destroy_process_group()