File size: 3,084 Bytes
4e4bc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27fb610
c704b8d
4e4bc00
c704b8d
9db2daf
 
 
 
 
 
4e4bc00
f82a2a4
c716b74
4e4bc00
 
 
f82a2a4
4e4bc00
 
 
f82a2a4
 
 
4e4bc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: crisis_emotion_roberta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# crisis_emotion_roberta

This emotion classification model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on a dataset of 9,300 tweets in the Flint Water Crisis (Wu, Wong, Zhao, & Liu, 2021). It achieves the following results on the testing set:
0.75 accuracy, 0.74 weighted accuracy, and 0.68 macro accuracy. 

## Classify the primary emotion of a crisis tweet into one of the following 6 categories (The F-1 score for each emotion):
0. Anger (0.83)
1. Sadness (0.67)
2. Joy (0.69)
3. Sympathy (0.80)
4. Sarcasm (0.44)
5. Neutral (0.64)

To cite our work: 
Wu, J., Wong, C.-W., Zhao, X., & Liu, X. (2021). Toward effective automated content analysis via crowdsourcing. Paper presented at the IEEE International Conference on Multimedia and Expo (ICME). https://doi.org/10.1109/ICME51207.2021.9428220

## Intended uses & limitations

For classifying the emotion of English tweets during crises & disasters

## Training and evaluation data

Dataset: 9,300 tweets in the Flint water crisis. 
Each tweet was labeled by trained & qualified crowdsourcing workers for 3-5 times.
For detail, see our IEEE ICME paper - Wu, Wong, Zhao, & Liu, 2021. (https://arxiv.org/pdf/2101.04615.pdf)

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7558        | 1.0   | 349  | 0.8849          | 0.6839   |
| 0.7716        | 2.0   | 698  | 0.8137          | 0.7306   |
| 1.0935        | 3.0   | 1047 | 0.8435          | 0.7333   |
| 0.4497        | 4.0   | 1396 | 0.9084          | 0.7371   |
| 0.3247        | 5.0   | 1745 | 1.0200          | 0.7355   |
| 0.0225        | 6.0   | 2094 | 1.1517          | 0.7344   |
| 0.2034        | 7.0   | 2443 | 1.2812          | 0.7333   |
| 0.0224        | 8.0   | 2792 | 1.4054          | 0.7258   |
| 0.008         | 9.0   | 3141 | 1.4090          | 0.7242   |
| 0.0067        | 10.0  | 3490 | 1.4884          | 0.7204   |
| 0.4066        | 11.0  | 3839 | 1.5450          | 0.7220   |
| 0.0033        | 12.0  | 4188 | 1.6056          | 0.7247   |
| 0.003         | 13.0  | 4537 | 1.6327          | 0.7247   |
| 0.0037        | 14.0  | 4886 | 1.6871          | 0.7285   |
| 0.0025        | 15.0  | 5235 | 1.6898          | 0.7274   |


### Framework versions

- Transformers 4.23.0.dev0
- Pytorch 1.13.0.dev20220917+cu117
- Datasets 2.4.0
- Tokenizers 0.12.1