--- license: apache-2.0 library_name: scikit-learn tags: - tabular-regression - sales-forecast - gradient-boosting - cross-sectional datasets: - dev02chandan/sales-forecast-dataset metrics: - rmse - mae - mape - smape --- # Sales Forecast Model (GBR) **Task:** Predict `Product_Store_Sales_Total` from product and store attributes. **Data:** dev02chandan/sales-forecast-dataset (`raw/SuperKart.csv` with processed train/test under `processed/`). **Model:** GradientBoostingRegressor selected via GroupKFold CV on `Store_Id`. ## Test Metrics - CV RMSE: 1157.1346565946897 - RMSE: 1600.05837632221 - MAE: 1405.5687461646362 - MAPE: 27.069205177956633 - sMAPE: 32.25248697544593 ## Usage ```python from huggingface_hub import hf_hub_download import joblib, pandas as pd pkl_path = hf_hub_download(repo_id="dev02chandan/sales-forecast-model", filename="model.pkl", repo_type="model") model = joblib.load(pkl_path) # X must contain the same columns used in training (one-hot is inside the pipeline) # Example: # X = pd.DataFrame([...]) # y_pred = model.predict(X)