File size: 4,905 Bytes
059f0e7 65d67b1 059f0e7 65d67b1 059f0e7 65d67b1 059f0e7 65d67b1 059f0e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
license: other
license_name: qwen2.5-vl
license_link: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/LICENSE
base_model: Qwen/Qwen2.5-VL-7B-Instruct
tags:
- vision
- image-text-to-text
- weather
- meteorology
- climate
- qwen2.5-vl
language:
- en
pipeline_tag: image-text-to-text
library_name: transformers
---
# Weather Analysis Vision-Language Model (Qwen2.5-VL-7B)
A specialized vision-language model for meteorological image analysis, fine-tuned from Qwen2.5-VL-7B-Instruct.
## Model Details
- **Architecture**: Qwen2.5-VL (Vision-Language Model)
- **Parameters**: 7.6B
- **Base Model**: [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- Rank (r): 32
- Alpha: 32
- Target modules: ['v_proj', 'down_proj', 'gate_proj', 'k_proj', 'up_proj', 'q_proj', 'o_proj']
- **Training Data**: Specialized weather and meteorological imagery dataset
- **Checkpoint**: checkpoint-7000
## Training Statistics
```json
{
"global_step": 7000,
"epoch": 2.911837350180693,
"total_flos": 4.786937654858951e+18,
"train_loss": ".751"
}
```
## Image Preprocessing Note
This model was trained with images preprocessed to 448x448 resolution. While Qwen2.5-VL supports dynamic resolution:
- Best performance may be achieved with 448x448 images
- The model will still work well with other resolutions
- Native support for images from 56x56 to 3584x3584
## Quick Start
```python
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from PIL import Image
import torch
# Load model and processor
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"qwen25-vl-weather-7b",
torch_dtype=torch.float16,
device_map="auto"
)
processor = AutoProcessor.from_pretrained("qwen25-vl-weather-7b")
# Prepare your weather image
image = Image.open("weather_image.jpg")
# Create a prompt
prompt = "Analyze this weather image and describe the meteorological conditions."
# Format the message
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt}
]
}
]
# Process the input
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt"
).to(model.device)
# Generate response
generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(output_text)
```
## Intended Use
This model is designed for:
- **Weather Analysis**: Interpreting meteorological imagery and data
- **Educational Applications**: Teaching weather concepts
- **Research Support**: Assisting in weather data analysis
- **Operational Meteorology**: Supporting weather forecasting workflows
## Capabilities
The model excels at analyzing:
- **Radar Imagery**: Reflectivity, velocity, dual-polarization products
- **Satellite Data**: Visible, infrared, water vapor imagery
- **Surface Charts**: Weather maps, station plots, frontal analysis
- **Upper Air Data**: Soundings, constant pressure charts
- **Model Output**: Forecast charts, ensemble data
- **Observational Data**: Surface observations, meteograms
## Example Prompts
Professional Analysis:
- "Analyze the radar reflectivity patterns and identify any supercell characteristics."
- "What does this water vapor imagery reveal about the jet stream position?"
- "Describe the atmospheric stability based on this sounding."
Educational:
- "Explain this weather pattern in simple terms."
- "What safety precautions should people take given these conditions?"
## Limitations
- Specialized for meteorological imagery; may not perform well on general images
- Best with standard meteorological data formats and visualizations
- Responses reflect training data biases toward certain weather phenomena
## Hardware Requirements
- **Minimum VRAM**: 16GB (with 8-bit quantization)
- **Recommended VRAM**: 24GB+ (for full precision)
- **Optimal Performance**: NVIDIA A100/H100 or RTX 4090/3090
## Citation
```bibtex
@misc{weather-qwen25vl-2025,
title={Weather Analysis Vision-Language Model based on Qwen2.5-VL-7B},
author={Deepguess},
year={2025},
publisher={HuggingFace},
url={https://huggingface.co/qwen25-vl-weather-7b}
}
```
## Acknowledgments
- Base model: Qwen team for Qwen2.5-VL
- Training framework: Unsloth for efficient fine-tuning
- Dataset: Custom curated weather imagery dataset
## License
This model follows the license terms of Qwen2.5-VL. See the [license file](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/LICENSE) for details.
|