File size: 4,905 Bytes
059f0e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65d67b1
059f0e7
 
 
 
 
 
 
 
 
 
 
 
65d67b1
059f0e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65d67b1
059f0e7
65d67b1
 
059f0e7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: other
license_name: qwen2.5-vl
license_link: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/LICENSE
base_model: Qwen/Qwen2.5-VL-7B-Instruct
tags:
- vision
- image-text-to-text
- weather
- meteorology
- climate
- qwen2.5-vl
language:
- en
pipeline_tag: image-text-to-text
library_name: transformers
---

# Weather Analysis Vision-Language Model (Qwen2.5-VL-7B)

A specialized vision-language model for meteorological image analysis, fine-tuned from Qwen2.5-VL-7B-Instruct.

## Model Details

- **Architecture**: Qwen2.5-VL (Vision-Language Model)
- **Parameters**: 7.6B
- **Base Model**: [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
  - Rank (r): 32
  - Alpha: 32
  - Target modules: ['v_proj', 'down_proj', 'gate_proj', 'k_proj', 'up_proj', 'q_proj', 'o_proj']
- **Training Data**: Specialized weather and meteorological imagery dataset
- **Checkpoint**: checkpoint-7000

## Training Statistics

```json
{
  "global_step": 7000,
  "epoch": 2.911837350180693,
  "total_flos": 4.786937654858951e+18,
  "train_loss": ".751"
}
```

## Image Preprocessing Note

This model was trained with images preprocessed to 448x448 resolution. While Qwen2.5-VL supports dynamic resolution:
- Best performance may be achieved with 448x448 images
- The model will still work well with other resolutions
- Native support for images from 56x56 to 3584x3584


## Quick Start

```python
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from PIL import Image
import torch

# Load model and processor
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    "qwen25-vl-weather-7b",
    torch_dtype=torch.float16,
    device_map="auto"
)
processor = AutoProcessor.from_pretrained("qwen25-vl-weather-7b")

# Prepare your weather image
image = Image.open("weather_image.jpg")

# Create a prompt
prompt = "Analyze this weather image and describe the meteorological conditions."

# Format the message
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image"},
            {"type": "text", "text": prompt}
        ]
    }
]

# Process the input
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
    text=[text],
    images=[image],
    padding=True,
    return_tensors="pt"
).to(model.device)

# Generate response
generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [
    out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]

print(output_text)
```

## Intended Use

This model is designed for:
- **Weather Analysis**: Interpreting meteorological imagery and data
- **Educational Applications**: Teaching weather concepts
- **Research Support**: Assisting in weather data analysis
- **Operational Meteorology**: Supporting weather forecasting workflows

## Capabilities

The model excels at analyzing:
- **Radar Imagery**: Reflectivity, velocity, dual-polarization products
- **Satellite Data**: Visible, infrared, water vapor imagery
- **Surface Charts**: Weather maps, station plots, frontal analysis
- **Upper Air Data**: Soundings, constant pressure charts
- **Model Output**: Forecast charts, ensemble data
- **Observational Data**: Surface observations, meteograms

## Example Prompts

Professional Analysis:
- "Analyze the radar reflectivity patterns and identify any supercell characteristics."
- "What does this water vapor imagery reveal about the jet stream position?"
- "Describe the atmospheric stability based on this sounding."

Educational:
- "Explain this weather pattern in simple terms."
- "What safety precautions should people take given these conditions?"

## Limitations

- Specialized for meteorological imagery; may not perform well on general images
- Best with standard meteorological data formats and visualizations
- Responses reflect training data biases toward certain weather phenomena

## Hardware Requirements

- **Minimum VRAM**: 16GB (with 8-bit quantization)
- **Recommended VRAM**: 24GB+ (for full precision)
- **Optimal Performance**: NVIDIA A100/H100 or RTX 4090/3090

## Citation

```bibtex
@misc{weather-qwen25vl-2025,
  title={Weather Analysis Vision-Language Model based on Qwen2.5-VL-7B},
  author={Deepguess},
  year={2025},
  publisher={HuggingFace},
  url={https://huggingface.co/qwen25-vl-weather-7b}
}
```

## Acknowledgments

- Base model: Qwen team for Qwen2.5-VL
- Training framework: Unsloth for efficient fine-tuning
- Dataset: Custom curated weather imagery dataset

## License

This model follows the license terms of Qwen2.5-VL. See the [license file](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/LICENSE) for details.