Robotics
Safetensors
English
hungchiayu commited on
Commit
145fb67
Β·
verified Β·
1 Parent(s): a3dc47c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -7
README.md CHANGED
@@ -1,10 +1,79 @@
1
  ---
2
- tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Code: [More Information Needed]
9
- - Paper: [More Information Needed]
10
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model:
3
+ - declare-lab/nora-long
4
+ datasets:
5
+ - TomNickson/OpenX-Embodiment
6
+ - jxu124/OpenX-Embodiment
7
+ language:
8
+ - en
9
+ license: mit
10
+
11
+ pipeline_tag: robotics
12
+ ---
13
+ # NORA-1.5: A Vision-Language-Action Model Trained using World Model- and Action-based Preference Rewards
14
+
15
+ [![Project Website](https://img.shields.io/badge/Project-Website-blue.svg)](https://declare-lab.github.io/nora-1.5)
16
+ [![Model](https://img.shields.io/badge/Model-NORA--1.5-brightgreen)](https://huggingface.co/declare-lab/nora-1.5)
17
+ [![arXiv](https://img.shields.io/badge/arXiv-2511.14659-b31b1b.svg)](https://arxiv.org/abs/2511.14659)
18
+ ![Status](https://img.shields.io/badge/Status-Active-orange)
19
+
20
+ πŸ”₯ Project NORA is supported by Gemini and Lambda Labs! We are thankful to them.
21
+
22
+ NORA-1.5 is a **Vision-Language-Action (VLA)** model that improves generalization and real-world decision making through **post-training with world-model-based and action-based preference rewards**.
23
+ The model builds upon the NORA foundation to achieve stronger **instruction following**, **closed-loop control**, and **real-robot success**, demonstrating reliability across **LIBERO** and **SimplerEnv** environments.
24
+
25
+ This repository consolidates the full open-source release of **model checkpoints**, **inference code**, **training code**, and **evaluation tools**, along with documentation and examples.
26
+
27
+ <p align="center">
28
+ <img src="https://declare-lab.github.io/assets/images/nora-1.5-arxiv-teaser.png" width="100%">
29
+ </p>
30
+
31
+
32
+ ---
33
+
34
+ ## 🌐 Project Website
35
+
36
+ πŸ”— **https://declare-lab.github.io/nora-1.5**
37
+
38
  ---
39
 
40
+ ## πŸš€ Key Features
41
+
42
+ - **Vision-Language-Action architecture** with enhanced **task completion rate** and **distraction rate**
43
+ - **Action-based preference optimization** using expert preference rewards
44
+ - **World-model-based preference learning** for improved planning and consistency
45
+ - Strong **closed-loop control**, enabling deployment in real robot settings
46
+ - Supports **multi-task**, **long-horizon**, and **few-shot generalization**
47
+ - Compatible with **LeRobot**, **LIBERO**, **SimplerEnv**, and custom environments
48
+
49
+ ---
50
+
51
+ ## πŸ“¦ Repository Structure (will update)
52
+
53
+
54
+
55
+ ## πŸ“† TODO <a name="todos"></a> ~ 1 week
56
+ - [ ] Release the inference code of Nora-1.5
57
+ - [ ] Release all relevant model checkpoints(Pretrained, libero, SimplerEnv etc)
58
+ - [ ] Release the training/fine-tuning code of Nora-1.5 with LeRobot Dataset
59
+ - [ ] Release SimplerEnv evaluation code
60
+
61
+ ## Minimal Inference Sample (Will update)
62
+ ```python
63
+ from inference.modelling_expert import VLAWithExpert
64
+
65
+ model = VLAWithExpert()
66
+ model.to('cuda')
67
+ outputs = model.sample_actions(PIL IMAGE,instruction,num_steps=10) ## Outputs 7 Dof action of normalized and unnormalized action
68
+ ```
69
+
70
+ ## Citation
71
+
72
+ ```bibtex
73
+ @article{hung2025nora15,
74
+ title={NORA-1.5: A Vision-Language-Action Model Trained using World Model- and Action-Based Preference Rewards},
75
+ author={Hung, Chia-Yu and Majumder, Navonil and Deng, Haoyuan, Liu Renhang, Yankang Ang, Amir Zadeh, Chuan Li, Dorien Herremans, Ziwei Wang, and Soujanya Poria},
76
+ journal={arXiv preprint},
77
+ year={2025}
78
+ }
79
+ ```