import pandas as pd import os # Load the data metadata = pd.read_csv("gaps_metadata.csv") splits = pd.read_csv("gaps_split_data.csv") # Extract path stems from the splits data (filename without extension) splits['path_stem'] = splits['path'].apply(lambda x: os.path.splitext(os.path.basename(x))[0]) # Merge the splits information with the metadata based on scorehash = path_stem merged_metadata = metadata.merge( splits[['path_stem', 'split']], left_on='scorehash', right_on='path_stem', how='left' ) # Drop the temporary path_stem column merged_metadata = merged_metadata.drop('path_stem', axis=1) # Save the updated metadata to a new CSV file merged_metadata.to_csv("gaps_metadata_with_splits.csv", index=False) print(f"Merged metadata saved to gaps_metadata_with_splits.csv") print(f"Added split information to {merged_metadata['split'].notna().sum()} out of {len(merged_metadata)} records")