---
language: en
license: apache-2.0
tags:
- ionic-simulation
- synthetic-data
- neural-networks
- threejs
- webgl
- chemistry
- biology
- 3D
- art
- climate
- ion
- python
- Electron
- physics
- science
- scintillation
- oceanography
- molecular-dynamics
datasets:
- IonicOceanSyntheticDataset
task_categories:
- time-series-forecasting
- tabular-regression
- tabular-classification
---
___ ___ ___ ___ ___ ___ ___ ___
___ / /\ / /\ ___ / /\ / /\ / /\ / /\ / /\ / /\
/__/\ / /::\ / /::| /__/\ / /::\ / /::\ / /::\ / /::\ / /::\ / /::|
\__\:\ / /:/\:\ / /:|:| \__\:\ / /:/\:\ / /:/\:\ / /:/\:\ / /:/\:\ / /:/\:\ / /:|:|
/ /::\ / /:/ \:\ / /:/|:|__ / /::\ / /:/ \:\ / /:/ \:\ / /:/ \:\ / /::\ \:\ / /::\ \:\ / /:/|:|__
__/ /:/\/ /__/:/ \__\:\ /__/:/ |:| /\ __/ /:/\/ /__/:/ \ \:\ /__/:/ \__\:\ /__/:/ \ \:\ /__/:/\:\ \:\ /__/:/\:\_\:\ /__/:/ |:| /\
/__/\/:/~~ \ \:\ / /:/ \__\/ |:|/:/ /__/\/:/~~ \ \:\ \__\/ \ \:\ / /:/ \ \:\ \__\/ \ \:\ \:\_\/ \__\/ \:\/:/ \__\/ |:|/:/
\ \::/ \ \:\ /:/ | |:/:/ \ \::/ \ \:\ \ \:\ /:/ \ \:\ \ \:\ \:\ \__\::/ | |:/:/
\ \:\ \ \:\/:/ |__|::/ \ \:\ \ \:\ \ \:\/:/ \ \:\ \ \:\_\/ / /:/ |__|::/
\__\/ \ \::/ /__/:/ \__\/ \ \:\ \ \::/ \ \:\ \ \:\ /__/:/ /__/:/
\__\/ \__\/ \__\/ \__\/ \__\/ \__\/ \__\/ \__\/
# IONICOCEAN
by webXOS
*THIS DATASET WAS CREATED USING IONICSPHERE. Ionicsphere.html is available for download in the /generator/ folder.*
*Trains synthetic data sets generated from ionic ocean simulations.*
The model predicts ionic stability and simulated quantum state transitions in ionic environments. Trapped-ion quantum simulators, typically involve physical hardware for tasks like
entanglement measurement or Hamiltonian engineering. This dataset is desgined as a fully synthetic browser-based alternative for developers without lab access.
### SPECS
**Model Name:** IonicOceanSyntheticDataset_v7.0
**Version:** 7.0
**Export Date:** 2025-12-31T00:27:29.944Z
### Training Summary
- **Total Epochs:** 3
- **Final Loss:** 0.6713
- **Final Accuracy:** 65.6%
- **Training Samples:** 800
- **Simulation Time:** 37.8s
### Dataset Information
This package contains real-time captured data from the ionic ocean simulation:
**Particle Data:**
- Frames captured: 29
- Particles per frame: 10240
- Total position samples: 890880
- Time range: 38s
**Features Captured:**
1. Position (x, y, z) - normalized coordinates
2. Velocity (x, y) - movement vectors
3. Timestamp - simulation time
4. Model state - neural network parameters at capture time
### Model Architecture
```
Input(5) → Dense(32, relu) → Dropout(0.2)
→ Dense(16, relu)
→ Dense(8, relu)
→ Output(1, sigmoid)
```
### Training Configuration
- **Optimizer:** Adam (learning_rate=0.001)
- **Loss Function:** Binary Crossentropy
- **Batch Size:** 32
- **Validation Split:** 20%
- **Shuffle:** True
### Simulation Parameters
- **Ion Count:** 10,240
- **Ocean Size:** 200x200 units
- **Physics Engine:** GPU.js accelerated
- **Render Engine:** Three.js r128
- **Target FPS:** 60
### File Structure
```
ionicsphere_export_v7.0_*.zip/
├── model_metadata.json # Model configuration and stats
├── training_log.json # Loss/accuracy per epoch
├── particle_data.json # Captured particle positions/velocities
├── README.md # This file
├── terminal_log.txt # CLI interaction history
└── config.json # System configuration
```
### Theory
The Ionic Ocean Synthetic Dataset is a specialized dataset designed to bridge the gap between complex atmospheric physics and efficient machine learning models.
The goal of this dataset is to provide high-fidelity training data for neural networks to predict ionospheric conditions—specifically electron density and signal
interference—without requiring the extreme computational power of traditional physics engines.
### Target Phenomenon
It models an "Ionic Ocean," referring to the fluid-like behavior of ionized particles in the Earth's upper atmosphere (ionosphere). This dataset allows for the
training of "surrogate models" that can predict results in real-time. Used for improving the accuracy of GNSS/GPS positioning by predicting and correcting for
atmospheric delays and signal scintillation.
### Technical
-Synthetic Generation:
The data is algorithmically generated, using a simplified physics-based simulation.
-Spatial Coordinates:
Latitude, longitude, and altitude.
-Temporal Data:
Timestamps reflecting diurnal (day/night) cycles.
-Physical Parameters:
Electron density, magnetic field orientation, and solar flux indices (e.g., F10.7 index).
-Format:
Distributed as a tabular dataset (often in .csv or .parquet formats) to be compatible with common machine learning frameworks like PyTorch or TensorFlow.
### Exmple Usage Instructions
**1. EXAMPLE: Load Model in TensorFlow.js:**
```javascript
async function loadModel() {
const model = await tf.loadLayersModel('tfjs_model/model.json');
const weights = await fetch('tfjs_model/weights.bin');
// Load weights and make predictions
}
```
**2. EXAMPLE: Analyze Particle Data:**
```javascript
const data = JSON.parse(particleDataJson);
const positions = data.positions; // Array of position frames
const velocities = data.velocities; // Array of velocity frames
```
**3. EXAMPLE: Reproduce Simulation:**
- Use Three.js with provided particle data
- Apply same physics parameters
- Feed data into neural network for stability predictions
### Citation
If you use this data in research, please cite:
```bibtex
@dataset{ionicocean,
title={Ionicocean Dataset},
author={webXOS]
year={2026},
publisher={webXOS},
url={webxos.netlify.app}
}
```
### License
Apache 2.0