--- language: en license: apache-2.0 tags: - ionic-simulation - synthetic-data - neural-networks - threejs - webgl - chemistry - biology - 3D - art - climate - ion - python - Electron - physics - science - scintillation - oceanography - molecular-dynamics datasets: - IonicOceanSyntheticDataset task_categories: - time-series-forecasting - tabular-regression - tabular-classification ---
                   ___           ___                        ___           ___           ___           ___           ___           ___     
       ___        /  /\         /  /\           ___        /  /\         /  /\         /  /\         /  /\         /  /\         /  /\    
      /__/\      /  /::\       /  /::|         /__/\      /  /::\       /  /::\       /  /::\       /  /::\       /  /::\       /  /::|   
      \__\:\    /  /:/\:\     /  /:|:|         \__\:\    /  /:/\:\     /  /:/\:\     /  /:/\:\     /  /:/\:\     /  /:/\:\     /  /:|:|   
      /  /::\  /  /:/  \:\   /  /:/|:|__       /  /::\  /  /:/  \:\   /  /:/  \:\   /  /:/  \:\   /  /::\ \:\   /  /::\ \:\   /  /:/|:|__ 
   __/  /:/\/ /__/:/ \__\:\ /__/:/ |:| /\   __/  /:/\/ /__/:/ \  \:\ /__/:/ \__\:\ /__/:/ \  \:\ /__/:/\:\ \:\ /__/:/\:\_\:\ /__/:/ |:| /\
  /__/\/:/~~  \  \:\ /  /:/ \__\/  |:|/:/  /__/\/:/~~  \  \:\  \__\/ \  \:\ /  /:/ \  \:\  \__\/ \  \:\ \:\_\/ \__\/  \:\/:/ \__\/  |:|/:/
  \  \::/      \  \:\  /:/      |  |:/:/   \  \::/      \  \:\        \  \:\  /:/   \  \:\        \  \:\ \:\        \__\::/      |  |:/:/ 
   \  \:\       \  \:\/:/       |__|::/     \  \:\       \  \:\        \  \:\/:/     \  \:\        \  \:\_\/        /  /:/       |__|::/  
    \__\/        \  \::/        /__/:/       \__\/        \  \:\        \  \::/       \  \:\        \  \:\         /__/:/        /__/:/   
                  \__\/         \__\/                      \__\/         \__\/         \__\/         \__\/         \__\/         \__\/    
    
# IONICOCEAN by webXOS *THIS DATASET WAS CREATED USING IONICSPHERE. Ionicsphere.html is available for download in the /generator/ folder.* *Trains synthetic data sets generated from ionic ocean simulations.* The model predicts ionic stability and simulated quantum state transitions in ionic environments. Trapped-ion quantum simulators, typically involve physical hardware for tasks like entanglement measurement or Hamiltonian engineering. This dataset is desgined as a fully synthetic browser-based alternative for developers without lab access. ### SPECS **Model Name:** IonicOceanSyntheticDataset_v7.0 **Version:** 7.0 **Export Date:** 2025-12-31T00:27:29.944Z ### Training Summary - **Total Epochs:** 3 - **Final Loss:** 0.6713 - **Final Accuracy:** 65.6% - **Training Samples:** 800 - **Simulation Time:** 37.8s ### Dataset Information This package contains real-time captured data from the ionic ocean simulation: **Particle Data:** - Frames captured: 29 - Particles per frame: 10240 - Total position samples: 890880 - Time range: 38s **Features Captured:** 1. Position (x, y, z) - normalized coordinates 2. Velocity (x, y) - movement vectors 3. Timestamp - simulation time 4. Model state - neural network parameters at capture time ### Model Architecture ``` Input(5) → Dense(32, relu) → Dropout(0.2) → Dense(16, relu) → Dense(8, relu) → Output(1, sigmoid) ``` ### Training Configuration - **Optimizer:** Adam (learning_rate=0.001) - **Loss Function:** Binary Crossentropy - **Batch Size:** 32 - **Validation Split:** 20% - **Shuffle:** True ### Simulation Parameters - **Ion Count:** 10,240 - **Ocean Size:** 200x200 units - **Physics Engine:** GPU.js accelerated - **Render Engine:** Three.js r128 - **Target FPS:** 60 ### File Structure ``` ionicsphere_export_v7.0_*.zip/ ├── model_metadata.json # Model configuration and stats ├── training_log.json # Loss/accuracy per epoch ├── particle_data.json # Captured particle positions/velocities ├── README.md # This file ├── terminal_log.txt # CLI interaction history └── config.json # System configuration ``` ### Theory The Ionic Ocean Synthetic Dataset is a specialized dataset designed to bridge the gap between complex atmospheric physics and efficient machine learning models. The goal of this dataset is to provide high-fidelity training data for neural networks to predict ionospheric conditions—specifically electron density and signal interference—without requiring the extreme computational power of traditional physics engines. ### Target Phenomenon It models an "Ionic Ocean," referring to the fluid-like behavior of ionized particles in the Earth's upper atmosphere (ionosphere). This dataset allows for the training of "surrogate models" that can predict results in real-time. Used for improving the accuracy of GNSS/GPS positioning by predicting and correcting for atmospheric delays and signal scintillation. ### Technical -Synthetic Generation: The data is algorithmically generated, using a simplified physics-based simulation. -Spatial Coordinates: Latitude, longitude, and altitude. -Temporal Data: Timestamps reflecting diurnal (day/night) cycles. -Physical Parameters: Electron density, magnetic field orientation, and solar flux indices (e.g., F10.7 index). -Format: Distributed as a tabular dataset (often in .csv or .parquet formats) to be compatible with common machine learning frameworks like PyTorch or TensorFlow. ### Exmple Usage Instructions **1. EXAMPLE: Load Model in TensorFlow.js:** ```javascript async function loadModel() { const model = await tf.loadLayersModel('tfjs_model/model.json'); const weights = await fetch('tfjs_model/weights.bin'); // Load weights and make predictions } ``` **2. EXAMPLE: Analyze Particle Data:** ```javascript const data = JSON.parse(particleDataJson); const positions = data.positions; // Array of position frames const velocities = data.velocities; // Array of velocity frames ``` **3. EXAMPLE: Reproduce Simulation:** - Use Three.js with provided particle data - Apply same physics parameters - Feed data into neural network for stability predictions ### Citation If you use this data in research, please cite: ```bibtex @dataset{ionicocean, title={Ionicocean Dataset}, author={webXOS] year={2026}, publisher={webXOS}, url={webxos.netlify.app} } ``` ### License Apache 2.0