Upload 6 files
Browse files- .gitattributes +1 -0
- README.md +108 -0
- config.json +29 -0
- model_metadata.json +21 -0
- particle_data.json +3 -0
- terminal_log.txt +111 -0
- training_log.json +590 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
particle_data.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ionic Sphere Quantum Simulator v7.0
|
| 2 |
+
## Real-Time Neural Training System
|
| 3 |
+
|
| 4 |
+
**Model Name:** IonicQuantumSimulator_v7.0
|
| 5 |
+
**Version:** 7.0
|
| 6 |
+
**Export Date:** 2025-12-31T00:27:29.944Z
|
| 7 |
+
|
| 8 |
+
### Training Summary
|
| 9 |
+
- **Total Epochs:** 3
|
| 10 |
+
- **Final Loss:** 0.6713
|
| 11 |
+
- **Final Accuracy:** 65.6%
|
| 12 |
+
- **Training Samples:** 800
|
| 13 |
+
- **Simulation Time:** 37.8s
|
| 14 |
+
|
| 15 |
+
### Dataset Information
|
| 16 |
+
This package contains real-time captured data from the quantum ionic simulation:
|
| 17 |
+
|
| 18 |
+
**Particle Data:**
|
| 19 |
+
- Frames captured: 29
|
| 20 |
+
- Particles per frame: 10240
|
| 21 |
+
- Total position samples: 890880
|
| 22 |
+
- Time range: 38s
|
| 23 |
+
|
| 24 |
+
**Features Captured:**
|
| 25 |
+
1. Position (x, y, z) - normalized coordinates
|
| 26 |
+
2. Velocity (x, y) - movement vectors
|
| 27 |
+
3. Timestamp - simulation time
|
| 28 |
+
4. Model state - neural network parameters at capture time
|
| 29 |
+
|
| 30 |
+
### Model Architecture
|
| 31 |
+
```
|
| 32 |
+
Input(5) → Dense(32, relu) → Dropout(0.2)
|
| 33 |
+
→ Dense(16, relu)
|
| 34 |
+
→ Dense(8, relu)
|
| 35 |
+
→ Output(1, sigmoid)
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
### Training Configuration
|
| 39 |
+
- **Optimizer:** Adam (learning_rate=0.001)
|
| 40 |
+
- **Loss Function:** Binary Crossentropy
|
| 41 |
+
- **Batch Size:** 32
|
| 42 |
+
- **Validation Split:** 20%
|
| 43 |
+
- **Shuffle:** True
|
| 44 |
+
|
| 45 |
+
### Simulation Parameters
|
| 46 |
+
- **Ion Count:** 10,240
|
| 47 |
+
- **Ocean Size:** 200x200 units
|
| 48 |
+
- **Physics Engine:** GPU.js accelerated
|
| 49 |
+
- **Render Engine:** Three.js r128
|
| 50 |
+
- **Target FPS:** 60
|
| 51 |
+
|
| 52 |
+
### File Structure
|
| 53 |
+
```
|
| 54 |
+
ionicsphere_export_v7.0_*.zip/
|
| 55 |
+
├── model_metadata.json # Model configuration and stats
|
| 56 |
+
├── training_log.json # Loss/accuracy per epoch
|
| 57 |
+
├── particle_data.json # Captured particle positions/velocities
|
| 58 |
+
├── screenshots/ # PNG frames from simulation
|
| 59 |
+
│ ├── frame_0_*.png
|
| 60 |
+
│ └── ...
|
| 61 |
+
├── tfjs_model/ # TensorFlow.js model files
|
| 62 |
+
│ ├── model.json
|
| 63 |
+
│ └── weights.bin
|
| 64 |
+
├── README.md # This file
|
| 65 |
+
├── terminal_log.txt # CLI interaction history
|
| 66 |
+
└── config.json # System configuration
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
### Usage Instructions
|
| 70 |
+
|
| 71 |
+
**1. Load Model in TensorFlow.js:**
|
| 72 |
+
```javascript
|
| 73 |
+
async function loadModel() {
|
| 74 |
+
const model = await tf.loadLayersModel('tfjs_model/model.json');
|
| 75 |
+
const weights = await fetch('tfjs_model/weights.bin');
|
| 76 |
+
// Load weights and make predictions
|
| 77 |
+
}
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
**2. Analyze Particle Data:**
|
| 81 |
+
```javascript
|
| 82 |
+
const data = JSON.parse(particleDataJson);
|
| 83 |
+
const positions = data.positions; // Array of position frames
|
| 84 |
+
const velocities = data.velocities; // Array of velocity frames
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
**3. Reproduce Simulation:**
|
| 88 |
+
- Use Three.js with provided particle data
|
| 89 |
+
- Apply same physics parameters
|
| 90 |
+
- Feed data into neural network for stability predictions
|
| 91 |
+
|
| 92 |
+
### Citation
|
| 93 |
+
If you use this data in research, please cite:
|
| 94 |
+
```bibtex
|
| 95 |
+
@dataset{ionic_sphere_2024,
|
| 96 |
+
title={Real-Time Quantum Ionic Simulation Dataset},
|
| 97 |
+
author={IONICSPHERE Research Team},
|
| 98 |
+
year={2024},
|
| 99 |
+
publisher={IONICSPHERE v7.0},
|
| 100 |
+
url={https://github.com/ionicsphere/simulator}
|
| 101 |
+
}
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
### License
|
| 105 |
+
Research Use Only - Attribution Required
|
| 106 |
+
|
| 107 |
+
### Contact
|
| 108 |
+
For questions or access to newer versions, visit the project repository.
|
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"simulation": {
|
| 3 |
+
"ion_count": 10240,
|
| 4 |
+
"ocean_size": 200,
|
| 5 |
+
"time_step": 0.016,
|
| 6 |
+
"physics_engine": "GPU.js"
|
| 7 |
+
},
|
| 8 |
+
"neural_network": {
|
| 9 |
+
"input_shape": [
|
| 10 |
+
5
|
| 11 |
+
],
|
| 12 |
+
"output_shape": [
|
| 13 |
+
1
|
| 14 |
+
],
|
| 15 |
+
"layers": [
|
| 16 |
+
32,
|
| 17 |
+
16,
|
| 18 |
+
8
|
| 19 |
+
],
|
| 20 |
+
"activation": "relu",
|
| 21 |
+
"output_activation": "sigmoid"
|
| 22 |
+
},
|
| 23 |
+
"export_info": {
|
| 24 |
+
"version": "7.0",
|
| 25 |
+
"format": "JSON/ZIP",
|
| 26 |
+
"total_size": "varies",
|
| 27 |
+
"compatible_with": "TensorFlow.js, Three.js"
|
| 28 |
+
}
|
| 29 |
+
}
|
model_metadata.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "IonicQuantumSimulator_v7.0",
|
| 3 |
+
"version": "7.0",
|
| 4 |
+
"export_date": "2025-12-31T00:27:28.589Z",
|
| 5 |
+
"epochs_trained": 3,
|
| 6 |
+
"final_loss": 0.6712959408760071,
|
| 7 |
+
"final_accuracy": 0.65625,
|
| 8 |
+
"particle_count": 10240,
|
| 9 |
+
"simulation_time": 36.255,
|
| 10 |
+
"features": [
|
| 11 |
+
"position_x",
|
| 12 |
+
"position_y",
|
| 13 |
+
"position_z",
|
| 14 |
+
"velocity_x",
|
| 15 |
+
"velocity_y"
|
| 16 |
+
],
|
| 17 |
+
"architecture": "5→32→16→8→1",
|
| 18 |
+
"optimizer": "adam",
|
| 19 |
+
"learning_rate": 0.001,
|
| 20 |
+
"batch_size": 32
|
| 21 |
+
}
|
particle_data.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6eec7646b413561178ef4b439d8a2e55e6342738a462e44dcd1f13a399cfb12
|
| 3 |
+
size 46086944
|
terminal_log.txt
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
========================================
|
| 2 |
+
REAL-TIME IONIC SIMULATOR v7.0
|
| 3 |
+
TensorFlow.js + Three.js Integration
|
| 4 |
+
========================================
|
| 5 |
+
Initializing quantum simulation matrix...
|
| 6 |
+
Loading TensorFlow.js neural kernel...
|
| 7 |
+
Generating 10,240 synthetic ions...
|
| 8 |
+
Type 'help' for available commands
|
| 9 |
+
$ █
|
| 10 |
+
[SYSTEM] Booting IONICSPHERE v7.0...
|
| 11 |
+
[TENSORFLOW] Initializing...
|
| 12 |
+
[TENSORFLOW] Backend: webgl
|
| 13 |
+
[TENSORFLOW] Creating neural network...
|
| 14 |
+
[TENSORFLOW] Model created successfully
|
| 15 |
+
[TENSORFLOW] Architecture: 5→32→16→8→1
|
| 16 |
+
[TENSORFLOW] Optimizer: Adam (0.001)
|
| 17 |
+
[DATA] Generating synthetic training data...
|
| 18 |
+
[DATA] Generated 800 training samples
|
| 19 |
+
[DATA] Generated 200 validation samples
|
| 20 |
+
[THREE.JS] Initializing 3D visualization...
|
| 21 |
+
[IONS] Created 10,240 particles
|
| 22 |
+
[GPU.JS] Physics kernel initialized
|
| 23 |
+
[THREE.JS] Visualization ready
|
| 24 |
+
[SYSTEM] Ready. Type "help" for commands.
|
| 25 |
+
[SYSTEM] Real-time training: train/stop
|
| 26 |
+
[SYSTEM] Data export: export
|
| 27 |
+
[SIMULATION] Started real-time quantum simulation
|
| 28 |
+
[TRAINING] Started real-time neural training
|
| 29 |
+
[TRAINING] Using live particle data as input
|
| 30 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 31 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 32 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 33 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 34 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 35 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 36 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 37 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 38 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 39 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 40 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 41 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 42 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 43 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 44 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 45 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 46 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 47 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 48 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 49 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 50 |
+
[CAPTURE] Stored 10 data frames
|
| 51 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 52 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 53 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 54 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 55 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 56 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 57 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 58 |
+
[TRAINING] Epoch 1 completed
|
| 59 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 60 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 61 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 62 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 63 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 64 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 65 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 66 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 67 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 68 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 69 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 70 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 71 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 72 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 73 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 74 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 75 |
+
[TRAINING] Epoch 2 completed
|
| 76 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 77 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 78 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 79 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 80 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 81 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 82 |
+
[CAPTURE] Stored 20 data frames
|
| 83 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 84 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 85 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 86 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 87 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 88 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 89 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 90 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 91 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 92 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 93 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 94 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 95 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 96 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 97 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 98 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 99 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 100 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 101 |
+
[TRAINING] Epoch 3 completed
|
| 102 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 103 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 104 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 105 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 106 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 107 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 108 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 109 |
+
[TRAINING] Error: Cannot start training because another fit() call is ongoing.
|
| 110 |
+
[TRAINING] Stopped
|
| 111 |
+
[EXPORT] Creating unified package...
|
training_log.json
ADDED
|
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"epoch": 0,
|
| 4 |
+
"batch": 0,
|
| 5 |
+
"loss": 0.7411002516746521,
|
| 6 |
+
"accuracy": 0.3125,
|
| 7 |
+
"timestamp": 1767140820443
|
| 8 |
+
},
|
| 9 |
+
{
|
| 10 |
+
"epoch": 0,
|
| 11 |
+
"batch": 1,
|
| 12 |
+
"loss": 0.748737096786499,
|
| 13 |
+
"accuracy": 0.3125,
|
| 14 |
+
"timestamp": 1767140820916
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"epoch": 0,
|
| 18 |
+
"batch": 2,
|
| 19 |
+
"loss": 0.7897660136222839,
|
| 20 |
+
"accuracy": 0.25,
|
| 21 |
+
"timestamp": 1767140821432
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"epoch": 0,
|
| 25 |
+
"batch": 3,
|
| 26 |
+
"loss": 0.7086161375045776,
|
| 27 |
+
"accuracy": 0.40625,
|
| 28 |
+
"timestamp": 1767140821808
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"epoch": 0,
|
| 32 |
+
"batch": 4,
|
| 33 |
+
"loss": 0.717400312423706,
|
| 34 |
+
"accuracy": 0.375,
|
| 35 |
+
"timestamp": 1767140822505
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"epoch": 0,
|
| 39 |
+
"batch": 5,
|
| 40 |
+
"loss": 0.737858235836029,
|
| 41 |
+
"accuracy": 0.4375,
|
| 42 |
+
"timestamp": 1767140823469
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"epoch": 0,
|
| 46 |
+
"batch": 6,
|
| 47 |
+
"loss": 0.6953486204147339,
|
| 48 |
+
"accuracy": 0.4375,
|
| 49 |
+
"timestamp": 1767140823806
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"epoch": 0,
|
| 53 |
+
"batch": 7,
|
| 54 |
+
"loss": 0.7095077037811279,
|
| 55 |
+
"accuracy": 0.40625,
|
| 56 |
+
"timestamp": 1767140824237
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"epoch": 0,
|
| 60 |
+
"batch": 8,
|
| 61 |
+
"loss": 0.7757364511489868,
|
| 62 |
+
"accuracy": 0.28125,
|
| 63 |
+
"timestamp": 1767140824902
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"epoch": 0,
|
| 67 |
+
"batch": 9,
|
| 68 |
+
"loss": 0.7191400527954102,
|
| 69 |
+
"accuracy": 0.4375,
|
| 70 |
+
"timestamp": 1767140825147
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"epoch": 0,
|
| 74 |
+
"batch": 10,
|
| 75 |
+
"loss": 0.7332611680030823,
|
| 76 |
+
"accuracy": 0.40625,
|
| 77 |
+
"timestamp": 1767140825360
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"epoch": 0,
|
| 81 |
+
"batch": 11,
|
| 82 |
+
"loss": 0.7418195009231567,
|
| 83 |
+
"accuracy": 0.3125,
|
| 84 |
+
"timestamp": 1767140825866
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"epoch": 0,
|
| 88 |
+
"batch": 12,
|
| 89 |
+
"loss": 0.7675049304962158,
|
| 90 |
+
"accuracy": 0.25,
|
| 91 |
+
"timestamp": 1767140826320
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"epoch": 0,
|
| 95 |
+
"batch": 13,
|
| 96 |
+
"loss": 0.7316216230392456,
|
| 97 |
+
"accuracy": 0.3125,
|
| 98 |
+
"timestamp": 1767140826776
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"epoch": 0,
|
| 102 |
+
"batch": 14,
|
| 103 |
+
"loss": 0.6952475309371948,
|
| 104 |
+
"accuracy": 0.5,
|
| 105 |
+
"timestamp": 1767140827294
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 0,
|
| 109 |
+
"batch": 15,
|
| 110 |
+
"loss": 0.7152165770530701,
|
| 111 |
+
"accuracy": 0.3125,
|
| 112 |
+
"timestamp": 1767140828054
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"epoch": 0,
|
| 116 |
+
"batch": 16,
|
| 117 |
+
"loss": 0.7109678983688354,
|
| 118 |
+
"accuracy": 0.40625,
|
| 119 |
+
"timestamp": 1767140828120
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"epoch": 0,
|
| 123 |
+
"batch": 17,
|
| 124 |
+
"loss": 0.7420613765716553,
|
| 125 |
+
"accuracy": 0.375,
|
| 126 |
+
"timestamp": 1767140828272
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"epoch": 0,
|
| 130 |
+
"batch": 18,
|
| 131 |
+
"loss": 0.71675705909729,
|
| 132 |
+
"accuracy": 0.3125,
|
| 133 |
+
"timestamp": 1767140828651
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
"epoch": 0,
|
| 137 |
+
"batch": 19,
|
| 138 |
+
"loss": 0.7275558114051819,
|
| 139 |
+
"accuracy": 0.3125,
|
| 140 |
+
"timestamp": 1767140829014
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"epoch": 0,
|
| 144 |
+
"batch": 20,
|
| 145 |
+
"loss": 0.7111624479293823,
|
| 146 |
+
"accuracy": 0.34375,
|
| 147 |
+
"timestamp": 1767140829324
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"epoch": 0,
|
| 151 |
+
"batch": 21,
|
| 152 |
+
"loss": 0.6968860030174255,
|
| 153 |
+
"accuracy": 0.40625,
|
| 154 |
+
"timestamp": 1767140829608
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"epoch": 0,
|
| 158 |
+
"batch": 22,
|
| 159 |
+
"loss": 0.7071496248245239,
|
| 160 |
+
"accuracy": 0.53125,
|
| 161 |
+
"timestamp": 1767140829935
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"epoch": 0,
|
| 165 |
+
"batch": 23,
|
| 166 |
+
"loss": 0.6908776760101318,
|
| 167 |
+
"accuracy": 0.46875,
|
| 168 |
+
"timestamp": 1767140830271
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"epoch": 0,
|
| 172 |
+
"batch": 24,
|
| 173 |
+
"loss": 0.6962689161300659,
|
| 174 |
+
"accuracy": 0.40625,
|
| 175 |
+
"timestamp": 1767140830655
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"epoch": 1,
|
| 179 |
+
"batch": 0,
|
| 180 |
+
"loss": 0.7090840935707092,
|
| 181 |
+
"accuracy": 0.375,
|
| 182 |
+
"timestamp": 1767140831106
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"epoch": 1,
|
| 186 |
+
"batch": 1,
|
| 187 |
+
"loss": 0.7116997241973877,
|
| 188 |
+
"accuracy": 0.5,
|
| 189 |
+
"timestamp": 1767140831400
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"epoch": 1,
|
| 193 |
+
"batch": 2,
|
| 194 |
+
"loss": 0.7077443599700928,
|
| 195 |
+
"accuracy": 0.375,
|
| 196 |
+
"timestamp": 1767140831774
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"epoch": 1,
|
| 200 |
+
"batch": 3,
|
| 201 |
+
"loss": 0.6939939856529236,
|
| 202 |
+
"accuracy": 0.5625,
|
| 203 |
+
"timestamp": 1767140832150
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"epoch": 1,
|
| 207 |
+
"batch": 4,
|
| 208 |
+
"loss": 0.6895667314529419,
|
| 209 |
+
"accuracy": 0.46875,
|
| 210 |
+
"timestamp": 1767140832515
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"epoch": 1,
|
| 214 |
+
"batch": 5,
|
| 215 |
+
"loss": 0.699230432510376,
|
| 216 |
+
"accuracy": 0.46875,
|
| 217 |
+
"timestamp": 1767140832989
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"epoch": 1,
|
| 221 |
+
"batch": 6,
|
| 222 |
+
"loss": 0.6921590566635132,
|
| 223 |
+
"accuracy": 0.46875,
|
| 224 |
+
"timestamp": 1767140833190
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"epoch": 1,
|
| 228 |
+
"batch": 7,
|
| 229 |
+
"loss": 0.6988462209701538,
|
| 230 |
+
"accuracy": 0.4375,
|
| 231 |
+
"timestamp": 1767140833516
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"epoch": 1,
|
| 235 |
+
"batch": 8,
|
| 236 |
+
"loss": 0.7171862721443176,
|
| 237 |
+
"accuracy": 0.375,
|
| 238 |
+
"timestamp": 1767140833662
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"epoch": 1,
|
| 242 |
+
"batch": 9,
|
| 243 |
+
"loss": 0.6946218013763428,
|
| 244 |
+
"accuracy": 0.4375,
|
| 245 |
+
"timestamp": 1767140833819
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"epoch": 1,
|
| 249 |
+
"batch": 10,
|
| 250 |
+
"loss": 0.6919615864753723,
|
| 251 |
+
"accuracy": 0.5,
|
| 252 |
+
"timestamp": 1767140833964
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"epoch": 1,
|
| 256 |
+
"batch": 11,
|
| 257 |
+
"loss": 0.6953616142272949,
|
| 258 |
+
"accuracy": 0.4375,
|
| 259 |
+
"timestamp": 1767140834074
|
| 260 |
+
},
|
| 261 |
+
{
|
| 262 |
+
"epoch": 1,
|
| 263 |
+
"batch": 12,
|
| 264 |
+
"loss": 0.7070935368537903,
|
| 265 |
+
"accuracy": 0.375,
|
| 266 |
+
"timestamp": 1767140834223
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"epoch": 1,
|
| 270 |
+
"batch": 13,
|
| 271 |
+
"loss": 0.7055894136428833,
|
| 272 |
+
"accuracy": 0.375,
|
| 273 |
+
"timestamp": 1767140834388
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"epoch": 1,
|
| 277 |
+
"batch": 14,
|
| 278 |
+
"loss": 0.6903753876686096,
|
| 279 |
+
"accuracy": 0.5625,
|
| 280 |
+
"timestamp": 1767140834798
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"epoch": 1,
|
| 284 |
+
"batch": 15,
|
| 285 |
+
"loss": 0.6901687383651733,
|
| 286 |
+
"accuracy": 0.53125,
|
| 287 |
+
"timestamp": 1767140835068
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"epoch": 1,
|
| 291 |
+
"batch": 16,
|
| 292 |
+
"loss": 0.7004857063293457,
|
| 293 |
+
"accuracy": 0.46875,
|
| 294 |
+
"timestamp": 1767140835232
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"epoch": 1,
|
| 298 |
+
"batch": 17,
|
| 299 |
+
"loss": 0.7013710737228394,
|
| 300 |
+
"accuracy": 0.375,
|
| 301 |
+
"timestamp": 1767140835565
|
| 302 |
+
},
|
| 303 |
+
{
|
| 304 |
+
"epoch": 1,
|
| 305 |
+
"batch": 18,
|
| 306 |
+
"loss": 0.6903039813041687,
|
| 307 |
+
"accuracy": 0.46875,
|
| 308 |
+
"timestamp": 1767140835970
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"epoch": 1,
|
| 312 |
+
"batch": 19,
|
| 313 |
+
"loss": 0.6959590315818787,
|
| 314 |
+
"accuracy": 0.53125,
|
| 315 |
+
"timestamp": 1767140836436
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"epoch": 1,
|
| 319 |
+
"batch": 20,
|
| 320 |
+
"loss": 0.6937905550003052,
|
| 321 |
+
"accuracy": 0.40625,
|
| 322 |
+
"timestamp": 1767140837174
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"epoch": 1,
|
| 326 |
+
"batch": 21,
|
| 327 |
+
"loss": 0.6821688413619995,
|
| 328 |
+
"accuracy": 0.59375,
|
| 329 |
+
"timestamp": 1767140837329
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"epoch": 1,
|
| 333 |
+
"batch": 22,
|
| 334 |
+
"loss": 0.6867853999137878,
|
| 335 |
+
"accuracy": 0.59375,
|
| 336 |
+
"timestamp": 1767140837479
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
"epoch": 1,
|
| 340 |
+
"batch": 23,
|
| 341 |
+
"loss": 0.6854528784751892,
|
| 342 |
+
"accuracy": 0.5625,
|
| 343 |
+
"timestamp": 1767140837627
|
| 344 |
+
},
|
| 345 |
+
{
|
| 346 |
+
"epoch": 1,
|
| 347 |
+
"batch": 24,
|
| 348 |
+
"loss": 0.6779837608337402,
|
| 349 |
+
"accuracy": 0.6875,
|
| 350 |
+
"timestamp": 1767140837786
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 2,
|
| 354 |
+
"batch": 0,
|
| 355 |
+
"loss": 0.6750118732452393,
|
| 356 |
+
"accuracy": 0.6875,
|
| 357 |
+
"timestamp": 1767140837989
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"epoch": 2,
|
| 361 |
+
"batch": 1,
|
| 362 |
+
"loss": 0.6848226189613342,
|
| 363 |
+
"accuracy": 0.625,
|
| 364 |
+
"timestamp": 1767140838171
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"epoch": 2,
|
| 368 |
+
"batch": 2,
|
| 369 |
+
"loss": 0.6864094734191895,
|
| 370 |
+
"accuracy": 0.625,
|
| 371 |
+
"timestamp": 1767140838361
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"epoch": 2,
|
| 375 |
+
"batch": 3,
|
| 376 |
+
"loss": 0.6736193299293518,
|
| 377 |
+
"accuracy": 0.625,
|
| 378 |
+
"timestamp": 1767140838547
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"epoch": 2,
|
| 382 |
+
"batch": 4,
|
| 383 |
+
"loss": 0.6886866092681885,
|
| 384 |
+
"accuracy": 0.46875,
|
| 385 |
+
"timestamp": 1767140838842
|
| 386 |
+
},
|
| 387 |
+
{
|
| 388 |
+
"epoch": 2,
|
| 389 |
+
"batch": 5,
|
| 390 |
+
"loss": 0.6872621774673462,
|
| 391 |
+
"accuracy": 0.5625,
|
| 392 |
+
"timestamp": 1767140839113
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"epoch": 2,
|
| 396 |
+
"batch": 6,
|
| 397 |
+
"loss": 0.6883639097213745,
|
| 398 |
+
"accuracy": 0.5625,
|
| 399 |
+
"timestamp": 1767140839328
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"epoch": 2,
|
| 403 |
+
"batch": 7,
|
| 404 |
+
"loss": 0.7002809643745422,
|
| 405 |
+
"accuracy": 0.53125,
|
| 406 |
+
"timestamp": 1767140839713
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"epoch": 2,
|
| 410 |
+
"batch": 8,
|
| 411 |
+
"loss": 0.6715573072433472,
|
| 412 |
+
"accuracy": 0.625,
|
| 413 |
+
"timestamp": 1767140839960
|
| 414 |
+
},
|
| 415 |
+
{
|
| 416 |
+
"epoch": 2,
|
| 417 |
+
"batch": 9,
|
| 418 |
+
"loss": 0.6938263773918152,
|
| 419 |
+
"accuracy": 0.40625,
|
| 420 |
+
"timestamp": 1767140840368
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"epoch": 2,
|
| 424 |
+
"batch": 10,
|
| 425 |
+
"loss": 0.6874582767486572,
|
| 426 |
+
"accuracy": 0.53125,
|
| 427 |
+
"timestamp": 1767140840631
|
| 428 |
+
},
|
| 429 |
+
{
|
| 430 |
+
"epoch": 2,
|
| 431 |
+
"batch": 11,
|
| 432 |
+
"loss": 0.6666799783706665,
|
| 433 |
+
"accuracy": 0.71875,
|
| 434 |
+
"timestamp": 1767140841058
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"epoch": 2,
|
| 438 |
+
"batch": 12,
|
| 439 |
+
"loss": 0.6758941411972046,
|
| 440 |
+
"accuracy": 0.65625,
|
| 441 |
+
"timestamp": 1767140841589
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"epoch": 2,
|
| 445 |
+
"batch": 13,
|
| 446 |
+
"loss": 0.6774862408638,
|
| 447 |
+
"accuracy": 0.6875,
|
| 448 |
+
"timestamp": 1767140842012
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"epoch": 2,
|
| 452 |
+
"batch": 14,
|
| 453 |
+
"loss": 0.6637570261955261,
|
| 454 |
+
"accuracy": 0.78125,
|
| 455 |
+
"timestamp": 1767140842240
|
| 456 |
+
},
|
| 457 |
+
{
|
| 458 |
+
"epoch": 2,
|
| 459 |
+
"batch": 15,
|
| 460 |
+
"loss": 0.684646487236023,
|
| 461 |
+
"accuracy": 0.53125,
|
| 462 |
+
"timestamp": 1767140842587
|
| 463 |
+
},
|
| 464 |
+
{
|
| 465 |
+
"epoch": 2,
|
| 466 |
+
"batch": 16,
|
| 467 |
+
"loss": 0.6750656366348267,
|
| 468 |
+
"accuracy": 0.71875,
|
| 469 |
+
"timestamp": 1767140842826
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"epoch": 2,
|
| 473 |
+
"batch": 17,
|
| 474 |
+
"loss": 0.6863251328468323,
|
| 475 |
+
"accuracy": 0.5625,
|
| 476 |
+
"timestamp": 1767140843053
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"epoch": 2,
|
| 480 |
+
"batch": 18,
|
| 481 |
+
"loss": 0.7029653191566467,
|
| 482 |
+
"accuracy": 0.5,
|
| 483 |
+
"timestamp": 1767140843289
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"epoch": 2,
|
| 487 |
+
"batch": 19,
|
| 488 |
+
"loss": 0.6970543265342712,
|
| 489 |
+
"accuracy": 0.59375,
|
| 490 |
+
"timestamp": 1767140843429
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"epoch": 2,
|
| 494 |
+
"batch": 20,
|
| 495 |
+
"loss": 0.7156466245651245,
|
| 496 |
+
"accuracy": 0.375,
|
| 497 |
+
"timestamp": 1767140843686
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
"epoch": 2,
|
| 501 |
+
"batch": 21,
|
| 502 |
+
"loss": 0.6840257048606873,
|
| 503 |
+
"accuracy": 0.53125,
|
| 504 |
+
"timestamp": 1767140843923
|
| 505 |
+
},
|
| 506 |
+
{
|
| 507 |
+
"epoch": 2,
|
| 508 |
+
"batch": 22,
|
| 509 |
+
"loss": 0.6979974508285522,
|
| 510 |
+
"accuracy": 0.5625,
|
| 511 |
+
"timestamp": 1767140844310
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"epoch": 2,
|
| 515 |
+
"batch": 23,
|
| 516 |
+
"loss": 0.685049295425415,
|
| 517 |
+
"accuracy": 0.53125,
|
| 518 |
+
"timestamp": 1767140844455
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"epoch": 2,
|
| 522 |
+
"batch": 24,
|
| 523 |
+
"loss": 0.6642530560493469,
|
| 524 |
+
"accuracy": 0.75,
|
| 525 |
+
"timestamp": 1767140844747
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"epoch": 3,
|
| 529 |
+
"batch": 0,
|
| 530 |
+
"loss": 0.6771752834320068,
|
| 531 |
+
"accuracy": 0.625,
|
| 532 |
+
"timestamp": 1767140845021
|
| 533 |
+
},
|
| 534 |
+
{
|
| 535 |
+
"epoch": 3,
|
| 536 |
+
"batch": 1,
|
| 537 |
+
"loss": 0.659159779548645,
|
| 538 |
+
"accuracy": 0.625,
|
| 539 |
+
"timestamp": 1767140845246
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"epoch": 3,
|
| 543 |
+
"batch": 2,
|
| 544 |
+
"loss": 0.6672576665878296,
|
| 545 |
+
"accuracy": 0.6875,
|
| 546 |
+
"timestamp": 1767140845426
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"epoch": 3,
|
| 550 |
+
"batch": 3,
|
| 551 |
+
"loss": 0.6715335845947266,
|
| 552 |
+
"accuracy": 0.65625,
|
| 553 |
+
"timestamp": 1767140845957
|
| 554 |
+
},
|
| 555 |
+
{
|
| 556 |
+
"epoch": 3,
|
| 557 |
+
"batch": 4,
|
| 558 |
+
"loss": 0.6796213388442993,
|
| 559 |
+
"accuracy": 0.59375,
|
| 560 |
+
"timestamp": 1767140846322
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
"epoch": 3,
|
| 564 |
+
"batch": 5,
|
| 565 |
+
"loss": 0.6706708669662476,
|
| 566 |
+
"accuracy": 0.53125,
|
| 567 |
+
"timestamp": 1767140846615
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"epoch": 3,
|
| 571 |
+
"batch": 6,
|
| 572 |
+
"loss": 0.6850961446762085,
|
| 573 |
+
"accuracy": 0.53125,
|
| 574 |
+
"timestamp": 1767140846815
|
| 575 |
+
},
|
| 576 |
+
{
|
| 577 |
+
"epoch": 3,
|
| 578 |
+
"batch": 7,
|
| 579 |
+
"loss": 0.677682638168335,
|
| 580 |
+
"accuracy": 0.65625,
|
| 581 |
+
"timestamp": 1767140846956
|
| 582 |
+
},
|
| 583 |
+
{
|
| 584 |
+
"epoch": 3,
|
| 585 |
+
"batch": 8,
|
| 586 |
+
"loss": 0.6712959408760071,
|
| 587 |
+
"accuracy": 0.65625,
|
| 588 |
+
"timestamp": 1767140847277
|
| 589 |
+
}
|
| 590 |
+
]
|