Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Commit
·
04646bb
1
Parent(s):
34986e8
Delete loading script
Browse files- commonsense_qa.py +0 -102
commonsense_qa.py
DELETED
|
@@ -1,102 +0,0 @@
|
|
| 1 |
-
"""CommonsenseQA dataset."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import json
|
| 5 |
-
|
| 6 |
-
import datasets
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
_HOMEPAGE = "https://www.tau-nlp.org/commonsenseqa"
|
| 10 |
-
|
| 11 |
-
_DESCRIPTION = """\
|
| 12 |
-
CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge
|
| 13 |
-
to predict the correct answers . It contains 12,102 questions with one correct answer and four distractor answers.
|
| 14 |
-
The dataset is provided in two major training/validation/testing set splits: "Random split" which is the main evaluation
|
| 15 |
-
split, and "Question token split", see paper for details.
|
| 16 |
-
"""
|
| 17 |
-
|
| 18 |
-
_CITATION = """\
|
| 19 |
-
@inproceedings{talmor-etal-2019-commonsenseqa,
|
| 20 |
-
title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
|
| 21 |
-
author = "Talmor, Alon and
|
| 22 |
-
Herzig, Jonathan and
|
| 23 |
-
Lourie, Nicholas and
|
| 24 |
-
Berant, Jonathan",
|
| 25 |
-
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
|
| 26 |
-
month = jun,
|
| 27 |
-
year = "2019",
|
| 28 |
-
address = "Minneapolis, Minnesota",
|
| 29 |
-
publisher = "Association for Computational Linguistics",
|
| 30 |
-
url = "https://aclanthology.org/N19-1421",
|
| 31 |
-
doi = "10.18653/v1/N19-1421",
|
| 32 |
-
pages = "4149--4158",
|
| 33 |
-
archivePrefix = "arXiv",
|
| 34 |
-
eprint = "1811.00937",
|
| 35 |
-
primaryClass = "cs",
|
| 36 |
-
}
|
| 37 |
-
"""
|
| 38 |
-
|
| 39 |
-
_URL = "https://s3.amazonaws.com/commensenseqa"
|
| 40 |
-
_URLS = {
|
| 41 |
-
"train": f"{_URL}/train_rand_split.jsonl",
|
| 42 |
-
"validation": f"{_URL}/dev_rand_split.jsonl",
|
| 43 |
-
"test": f"{_URL}/test_rand_split_no_answers.jsonl",
|
| 44 |
-
}
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
class CommonsenseQa(datasets.GeneratorBasedBuilder):
|
| 48 |
-
"""CommonsenseQA dataset."""
|
| 49 |
-
|
| 50 |
-
VERSION = datasets.Version("1.0.0")
|
| 51 |
-
|
| 52 |
-
def _info(self):
|
| 53 |
-
features = datasets.Features(
|
| 54 |
-
{
|
| 55 |
-
"id": datasets.Value("string"),
|
| 56 |
-
"question": datasets.Value("string"),
|
| 57 |
-
"question_concept": datasets.Value("string"),
|
| 58 |
-
"choices": datasets.features.Sequence(
|
| 59 |
-
{
|
| 60 |
-
"label": datasets.Value("string"),
|
| 61 |
-
"text": datasets.Value("string"),
|
| 62 |
-
}
|
| 63 |
-
),
|
| 64 |
-
"answerKey": datasets.Value("string"),
|
| 65 |
-
}
|
| 66 |
-
)
|
| 67 |
-
return datasets.DatasetInfo(
|
| 68 |
-
description=_DESCRIPTION,
|
| 69 |
-
features=features,
|
| 70 |
-
homepage=_HOMEPAGE,
|
| 71 |
-
citation=_CITATION,
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
def _split_generators(self, dl_manager):
|
| 75 |
-
"""Returns SplitGenerators."""
|
| 76 |
-
filepaths = dl_manager.download_and_extract(_URLS)
|
| 77 |
-
splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
|
| 78 |
-
return [
|
| 79 |
-
datasets.SplitGenerator(
|
| 80 |
-
name=split,
|
| 81 |
-
gen_kwargs={
|
| 82 |
-
"filepath": filepaths[split],
|
| 83 |
-
},
|
| 84 |
-
)
|
| 85 |
-
for split in splits
|
| 86 |
-
]
|
| 87 |
-
|
| 88 |
-
def _generate_examples(self, filepath):
|
| 89 |
-
"""Yields examples."""
|
| 90 |
-
with open(filepath, encoding="utf-8") as f:
|
| 91 |
-
for uid, row in enumerate(f):
|
| 92 |
-
data = json.loads(row)
|
| 93 |
-
choices = data["question"]["choices"]
|
| 94 |
-
labels = [label["label"] for label in choices]
|
| 95 |
-
texts = [text["text"] for text in choices]
|
| 96 |
-
yield uid, {
|
| 97 |
-
"id": data["id"],
|
| 98 |
-
"question": data["question"]["stem"],
|
| 99 |
-
"question_concept": data["question"]["question_concept"],
|
| 100 |
-
"choices": {"label": labels, "text": texts},
|
| 101 |
-
"answerKey": data.get("answerKey", ""),
|
| 102 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|