JanhaviS14 commited on
Commit
88d4c6b
·
verified ·
1 Parent(s): 1484d06

Update README.md

Browse files

Added data usage and quick baseline examples along with some minor improvements to the README.md

Files changed (1) hide show
  1. README.md +32 -5
README.md CHANGED
@@ -149,7 +149,7 @@ English
149
  ```
150
 
151
  ### Data Fields
152
-
153
  - sentence: a tokenized line from the dataset
154
  - label: a label corresponding to the class as a string: 'positive', 'negative' or 'neutral'
155
 
@@ -158,10 +158,37 @@ There's no train/validation/test split.
158
 
159
  However the dataset is available in four possible configurations depending on the percentage of agreement of annotators:
160
 
161
- `sentences_50agree`; Number of instances with >=50% annotator agreement: 4846
162
- `sentences_66agree`: Number of instances with >=66% annotator agreement: 4217
163
- `sentences_75agree`: Number of instances with >=75% annotator agreement: 3453
164
- `sentences_allagree`: Number of instances with 100% annotator agreement: 2264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
 
166
  ## Dataset Creation
167
 
 
149
  ```
150
 
151
  ### Data Fields
152
+ Each example contains:
153
  - sentence: a tokenized line from the dataset
154
  - label: a label corresponding to the class as a string: 'positive', 'negative' or 'neutral'
155
 
 
158
 
159
  However the dataset is available in four possible configurations depending on the percentage of agreement of annotators:
160
 
161
+ - `sentences_50agree`; Number of instances with >=50% annotator agreement: 4846
162
+ - `sentences_66agree`: Number of instances with >=66% annotator agreement: 4217
163
+ - `sentences_75agree`: Number of instances with >=75% annotator agreement: 3453
164
+ - `sentences_allagree`: Number of instances with 100% annotator agreement: 2264
165
+
166
+ ### Usage
167
+
168
+ ```python
169
+ from datasets import load_dataset
170
+
171
+ # Load the highest-agreement configuration
172
+ ds = load_dataset("takala/financial_phrasebank", "sentences_allagree")
173
+
174
+ print(ds)
175
+ print(ds["train"][0])
176
+ ```
177
+
178
+ Other configurations (e.g. `sentences_75agree`, `sentences_66agree`) can be loaded by changing the second argument.
179
+
180
+ ## Quick baseline (Transformers)
181
+
182
+ ```python
183
+ from datasets import load_dataset
184
+ from transformers import pipeline
185
+
186
+ ds = load_dataset("takala/financial_phrasebank", "sentences_allagree")["train"]
187
+ clf = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
188
+
189
+ print(ds[0]["sentence"])
190
+ print(clf(ds[0]["sentence"]))
191
+ ```
192
 
193
  ## Dataset Creation
194