File size: 3,248 Bytes
61a9da2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6fee5
61a9da2
 
 
 
 
 
 
bf6fee5
 
61a9da2
07831be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: mit
dataset_info:
  features:
  - name: id
    dtype: string
  - name: data_split
    dtype: string
  - name: execution
    dtype: string
  - name: split_id
    dtype: int64
  - name: question_type
    dtype: string
  - name: domain_description
    dtype: string
  - name: objects_description
    sequence: string
  - name: initial_states_description
    sequence: string
  - name: events
    sequence: string
  - name: question
    dtype: string
  - name: answers
    sequence: string
  - name: depth
    dtype: int64
  - name: do_not_train
    dtype: bool
  splits:
  - name: easy
    num_bytes: 13122551
    num_examples: 2700
  - name: medium
    num_bytes: 13645396
    num_examples: 2700
  - name: hard_serial
    num_bytes: 12891819
    num_examples: 2700
  - name: hard_parallel
    num_bytes: 13905948
    num_examples: 2700
  download_size: 5527713
  dataset_size: 53565714
---


# UnSeenTimeQA: Time-Sensitive Question-Answering Beyond LLMs’ Memorization [ACL 2025]

<div align="center">
<img src="assets/unseentimeqa.png" width=750/>
</div><br>

We introduce **UnSeenTimeQA**, a novel data contamination-free time-sensitive question-answering (TSQA) benchmark. It differs from existing TSQA benchmarks by avoiding web-searchable queries grounded in the real world. We present a series of time-sensitive event scenarios based on synthetically generated facts. It requires large language models (LLMs) to engage in genuine temporal reasoning without depending on the factual knowledge acquired during the pre-training phase. We designed three types of time-sensitive questions to test LLMs' temporal reasoning abilities over sequential and parallel event occurrences. Please refer to our paper [here](https://arxiv.org/abs/2407.03525).


## Developed by

* Md Nayem Uddin
* Amir Saeidi
* Divij Handa
* Agastya Seth
* Tran Cao Son
* Eduardo Blanco
* Steven R. Corman
* Chitta Baral

## Dataset

Different types of events (six) from the **UnSeenTimeQA** benchmark. The benchmark is structured into **four** difficulty levels: easy, medium, hard (serial), and hard (parallel). 

In the **easy level**, the start (S) and end (E) times of each event are given. 

The **medium level** includes the start time (S) and duration (D) of each event. 

The **hard (serial) level** presents only the duration (D) of events, assuming sequential occurrence. 

The **hard (parallel) level** also includes only durations (D), but events can occur simultaneously.

Structure of **UnSeenTimeQA** dataset:

```JSON
{
    "id": "int",
    "data_split": "str",
    "execution": "str",
    "split_id": "int",
    "question_type": "str",
    "domain_description": "str",
    "objects_description": "list",   
    "initial_states_description": "list",   
    "events": "list",   
    "question": "str",   
    "answers": "list",   
    "depth": "int",
    "do_not_train": "bool"
}
```

## Citation

```bibtex
@article{uddin2024unseentimeqa,
  title={UnSeenTimeQA: Time-Sensitive Question-Answering Beyond LLMs' Memorization},
  author={Uddin, Md Nayem and Saeidi, Amir and Handa, Divij and Seth, Agastya and Son, Tran Cao and Blanco, Eduardo and Corman, Steven R and Baral, Chitta},
  journal={arXiv preprint arXiv:2407.03525},
  year={2024}
}
```