--- dataset_info: features: - name: image dtype: image - name: mask dtype: image splits: - name: train num_bytes: 93594923 num_examples: 790 download_size: 93617398 dataset_size: 93594923 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 task_categories: - image-segmentation tags: - geodata - satellite - sentinel2 - ESA pretty_name: Simple Satelite Segmentation (Norway) size_categories: - n<1K --- # Satellite Segmentation Summary ------- This dataset contains paired Sentinel-2 RGB tiles and corresponding land-cover masks (derived from ESA WorldCover) prepared for semantic segmentation. Each example has: - `image`: RGB image (PNG) - `mask`: integer-labelled mask (PNG, uint8) Key details ----------- - Source imagery: Sentinel-2 L2A via Microsoft Planetary Computer (STAC) - Land-cover masks: ESA WorldCover (derived) - Spatial resolution: 10 m (aligned to Sentinel-2 grid) - CRS: EPSG:4326 - Number of samples: 790 - Train/validation split: Train Provenance & license -------------------- This dataset was derived from third‑party datasets: - Sentinel‑2 (Copernicus) - ESA WorldCover The user of this dataset must respect the original licenses and terms of use. The repository contains derived files (tiles). Data format ----------- - Images: PNG, RGB, 3 channels - Masks: PNG, integer values representing classes (do not normalize/convert to RGB) - Filenames: `{prefix}.png` and `{prefix}_mask.png` (paired by prefix) How to load ----------- Example (datasets library): ```python from datasets import load_dataset ds = load_dataset("nikolkoo/SatelliteSegmentation") ``` Example evaluation/training snippet ----------------------------------- Use CrossEntropyLoss with logits and integer masks: ```python # pseudocode images = batch["image"] # (B,H,W,3) -> to tensor & permute masks = batch["mask"] # (B,H,W) ints logits = model(images) loss = torch.nn.CrossEntropyLoss()(logits, masks) ``` Citation -------- If you publish results using this dataset, cite the original data providers (Copernicus / ESA / Microsoft Planetary Computer) and this dataset repo. Contact ------- Feel free to add a comment in the Community 🤗