Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
60f8c44
·
verified ·
1 Parent(s): 50d5b95

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +303 -0
README.md CHANGED
@@ -1,4 +1,24 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: de-corpus
4
  features:
@@ -497,4 +517,287 @@ configs:
497
  data_files:
498
  - split: test
499
  path: zh-queries/test-*
 
 
 
 
500
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - deu
6
+ - eng
7
+ - ind
8
+ - jpn
9
+ - rus
10
+ - spa
11
+ - tur
12
+ - zho
13
+ license: cc-by-sa-4.0
14
+ multilinguality: multilingual
15
+ source_datasets:
16
+ - floschne/xflickrco
17
+ task_categories:
18
+ - visual-document-retrieval
19
+ - image-to-text
20
+ - text-to-image
21
+ task_ids: []
22
  dataset_info:
23
  - config_name: de-corpus
24
  features:
 
517
  data_files:
518
  - split: test
519
  path: zh-queries/test-*
520
+ tags:
521
+ - mteb
522
+ - text
523
+ - image
524
  ---
525
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
526
+
527
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
528
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">XFlickr30kCoT2IRetrieval</h1>
529
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
530
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
531
+ </div>
532
+
533
+ Retrieve images based on multilingual descriptions.
534
+
535
+ | | |
536
+ |---------------|---------------------------------------------|
537
+ | Task category | t2i |
538
+ | Domains | Encyclopaedic, Written |
539
+ | Reference | https://proceedings.mlr.press/v162/bugliarello22a/bugliarello22a.pdf |
540
+
541
+ Source datasets:
542
+ - [floschne/xflickrco](https://huggingface.co/datasets/floschne/xflickrco)
543
+
544
+
545
+ ## How to evaluate on this task
546
+
547
+ You can evaluate an embedding model on this dataset using the following code:
548
+
549
+ ```python
550
+ import mteb
551
+
552
+ task = mteb.get_task("XFlickr30kCoT2IRetrieval")
553
+ evaluator = mteb.MTEB([task])
554
+
555
+ model = mteb.get_model(YOUR_MODEL)
556
+ evaluator.run(model)
557
+ ```
558
+
559
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
560
+ To learn more about how to run models on `mteb` task check out the [GitHub repository](https://github.com/embeddings-benchmark/mteb).
561
+
562
+ ## Citation
563
+
564
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
565
+
566
+ ```bibtex
567
+
568
+ @inproceedings{bugliarello2022iglue,
569
+ author = {Bugliarello, Emanuele and Liu, Fangyu and Pfeiffer, Jonas and Reddy, Siva and Elliott, Desmond and Ponti, Edoardo Maria and Vuli{\'c}, Ivan},
570
+ booktitle = {International Conference on Machine Learning},
571
+ organization = {PMLR},
572
+ pages = {2370--2392},
573
+ title = {IGLUE: A benchmark for transfer learning across modalities, tasks, and languages},
574
+ year = {2022},
575
+ }
576
+
577
+
578
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
579
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
580
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
581
+ publisher = {arXiv},
582
+ journal={arXiv preprint arXiv:2502.13595},
583
+ year={2025},
584
+ url={https://arxiv.org/abs/2502.13595},
585
+ doi = {10.48550/arXiv.2502.13595},
586
+ }
587
+
588
+ @article{muennighoff2022mteb,
589
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
590
+ title = {MTEB: Massive Text Embedding Benchmark},
591
+ publisher = {arXiv},
592
+ journal={arXiv preprint arXiv:2210.07316},
593
+ year = {2022}
594
+ url = {https://arxiv.org/abs/2210.07316},
595
+ doi = {10.48550/ARXIV.2210.07316},
596
+ }
597
+ ```
598
+
599
+ # Dataset Statistics
600
+ <details>
601
+ <summary> Dataset Statistics</summary>
602
+
603
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
604
+
605
+ ```python
606
+ import mteb
607
+
608
+ task = mteb.get_task("XFlickr30kCoT2IRetrieval")
609
+
610
+ desc_stats = task.metadata.descriptive_stats
611
+ ```
612
+
613
+ ```json
614
+ {
615
+ "test": {
616
+ "number_of_characters": 1149877,
617
+ "num_samples": 32000,
618
+ "num_queries": 16000,
619
+ "num_documents": 16000,
620
+ "min_document_length": 0,
621
+ "average_document_length": 0,
622
+ "max_document_length": 0,
623
+ "unique_documents": 0,
624
+ "num_document_images": 16000,
625
+ "min_query_length": 12,
626
+ "average_query_length": 71.8673125,
627
+ "max_query_length": 385,
628
+ "unique_queries": 15987,
629
+ "num_query_images": 0,
630
+ "min_relevant_docs_per_query": 1,
631
+ "average_relevant_docs_per_query": 1.0,
632
+ "max_relevant_docs_per_query": 1,
633
+ "unique_relevant_docs": 16000,
634
+ "hf_subset_descriptive_stats": {
635
+ "de": {
636
+ "number_of_characters": 132154,
637
+ "num_samples": 4000,
638
+ "num_queries": 2000,
639
+ "num_documents": 2000,
640
+ "min_document_length": 0,
641
+ "average_document_length": 0,
642
+ "max_document_length": 0,
643
+ "unique_documents": 0,
644
+ "num_document_images": 2000,
645
+ "min_query_length": 4,
646
+ "average_query_length": 66.077,
647
+ "max_query_length": 220,
648
+ "unique_queries": 1994,
649
+ "num_query_images": 0,
650
+ "min_relevant_docs_per_query": 1,
651
+ "average_relevant_docs_per_query": 1.0,
652
+ "max_relevant_docs_per_query": 1,
653
+ "unique_relevant_docs": 2000
654
+ },
655
+ "en": {
656
+ "number_of_characters": 153801,
657
+ "num_samples": 4000,
658
+ "num_queries": 2000,
659
+ "num_documents": 2000,
660
+ "min_document_length": 0,
661
+ "average_document_length": 0,
662
+ "max_document_length": 0,
663
+ "unique_documents": 0,
664
+ "num_document_images": 2000,
665
+ "min_query_length": 34,
666
+ "average_query_length": 76.9005,
667
+ "max_query_length": 377,
668
+ "unique_queries": 2000,
669
+ "num_query_images": 0,
670
+ "min_relevant_docs_per_query": 1,
671
+ "average_relevant_docs_per_query": 1.0,
672
+ "max_relevant_docs_per_query": 1,
673
+ "unique_relevant_docs": 2000
674
+ },
675
+ "es": {
676
+ "number_of_characters": 160049,
677
+ "num_samples": 4000,
678
+ "num_queries": 2000,
679
+ "num_documents": 2000,
680
+ "min_document_length": 0,
681
+ "average_document_length": 0,
682
+ "max_document_length": 0,
683
+ "unique_documents": 0,
684
+ "num_document_images": 2000,
685
+ "min_query_length": 23,
686
+ "average_query_length": 80.0245,
687
+ "max_query_length": 342,
688
+ "unique_queries": 2000,
689
+ "num_query_images": 0,
690
+ "min_relevant_docs_per_query": 1,
691
+ "average_relevant_docs_per_query": 1.0,
692
+ "max_relevant_docs_per_query": 1,
693
+ "unique_relevant_docs": 2000
694
+ },
695
+ "id": {
696
+ "number_of_characters": 167858,
697
+ "num_samples": 4000,
698
+ "num_queries": 2000,
699
+ "num_documents": 2000,
700
+ "min_document_length": 0,
701
+ "average_document_length": 0,
702
+ "max_document_length": 0,
703
+ "unique_documents": 0,
704
+ "num_document_images": 2000,
705
+ "min_query_length": 4,
706
+ "average_query_length": 83.929,
707
+ "max_query_length": 211,
708
+ "unique_queries": 2000,
709
+ "num_query_images": 0,
710
+ "min_relevant_docs_per_query": 1,
711
+ "average_relevant_docs_per_query": 1.0,
712
+ "max_relevant_docs_per_query": 1,
713
+ "unique_relevant_docs": 2000
714
+ },
715
+ "ja": {
716
+ "number_of_characters": 75480,
717
+ "num_samples": 4000,
718
+ "num_queries": 2000,
719
+ "num_documents": 2000,
720
+ "min_document_length": 0,
721
+ "average_document_length": 0,
722
+ "max_document_length": 0,
723
+ "unique_documents": 0,
724
+ "num_document_images": 2000,
725
+ "min_query_length": 9,
726
+ "average_query_length": 37.74,
727
+ "max_query_length": 179,
728
+ "unique_queries": 2000,
729
+ "num_query_images": 0,
730
+ "min_relevant_docs_per_query": 1,
731
+ "average_relevant_docs_per_query": 1.0,
732
+ "max_relevant_docs_per_query": 1,
733
+ "unique_relevant_docs": 2000
734
+ },
735
+ "ru": {
736
+ "number_of_characters": 149947,
737
+ "num_samples": 4000,
738
+ "num_queries": 2000,
739
+ "num_documents": 2000,
740
+ "min_document_length": 0,
741
+ "average_document_length": 0,
742
+ "max_document_length": 0,
743
+ "unique_documents": 0,
744
+ "num_document_images": 2000,
745
+ "min_query_length": 10,
746
+ "average_query_length": 74.9735,
747
+ "max_query_length": 294,
748
+ "unique_queries": 1997,
749
+ "num_query_images": 0,
750
+ "min_relevant_docs_per_query": 1,
751
+ "average_relevant_docs_per_query": 1.0,
752
+ "max_relevant_docs_per_query": 1,
753
+ "unique_relevant_docs": 2000
754
+ },
755
+ "tr": {
756
+ "number_of_characters": 136134,
757
+ "num_samples": 4000,
758
+ "num_queries": 2000,
759
+ "num_documents": 2000,
760
+ "min_document_length": 0,
761
+ "average_document_length": 0,
762
+ "max_document_length": 0,
763
+ "unique_documents": 0,
764
+ "num_document_images": 2000,
765
+ "min_query_length": 19,
766
+ "average_query_length": 68.067,
767
+ "max_query_length": 199,
768
+ "unique_queries": 1997,
769
+ "num_query_images": 0,
770
+ "min_relevant_docs_per_query": 1,
771
+ "average_relevant_docs_per_query": 1.0,
772
+ "max_relevant_docs_per_query": 1,
773
+ "unique_relevant_docs": 2000
774
+ },
775
+ "zh": {
776
+ "number_of_characters": 46454,
777
+ "num_samples": 4000,
778
+ "num_queries": 2000,
779
+ "num_documents": 2000,
780
+ "min_document_length": 0,
781
+ "average_document_length": 0,
782
+ "max_document_length": 0,
783
+ "unique_documents": 0,
784
+ "num_document_images": 2000,
785
+ "min_query_length": 10,
786
+ "average_query_length": 23.227,
787
+ "max_query_length": 66,
788
+ "unique_queries": 1999,
789
+ "num_query_images": 0,
790
+ "min_relevant_docs_per_query": 1,
791
+ "average_relevant_docs_per_query": 1.0,
792
+ "max_relevant_docs_per_query": 1,
793
+ "unique_relevant_docs": 2000
794
+ }
795
+ }
796
+ }
797
+ }
798
+ ```
799
+
800
+ </details>
801
+
802
+ ---
803
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*