Datasets:
Matthew Franglen
commited on
Commit
·
d136bc8
1
Parent(s):
38ef30f
Copy over the code from the blog post
Browse files- src/__init__.py +0 -0
- src/convert.py +331 -0
src/__init__.py
ADDED
|
File without changes
|
src/convert.py
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ast
|
| 2 |
+
import re
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Optional, TypedDict
|
| 5 |
+
|
| 6 |
+
import Levenshtein
|
| 7 |
+
import pandas as pd
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def read_sem_eval_file(file: str) -> pd.DataFrame:
|
| 11 |
+
df = pd.read_xml(file)[["text"]]
|
| 12 |
+
return df
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def read_aste_file(file: str) -> pd.DataFrame:
|
| 16 |
+
def triple_to_hashable(
|
| 17 |
+
triple: tuple[list[int], list[int], str]
|
| 18 |
+
) -> tuple[tuple[int, ...], tuple[int, ...], str]:
|
| 19 |
+
aspect_span, opinion_span, sentiment = triple
|
| 20 |
+
return tuple(aspect_span), tuple(opinion_span), sentiment
|
| 21 |
+
|
| 22 |
+
df = pd.read_csv(
|
| 23 |
+
file,
|
| 24 |
+
sep="####",
|
| 25 |
+
header=None,
|
| 26 |
+
names=["text", "triples"],
|
| 27 |
+
engine="python",
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# There are duplicate rows, some of which have the same triples and some don't
|
| 31 |
+
# This deals with that by
|
| 32 |
+
# * first dropping the pure duplicates,
|
| 33 |
+
# * then parsing the triples and exploding them to one per row
|
| 34 |
+
# * then dropping the exploded duplicates (have to convert triples back to string for this)
|
| 35 |
+
# * then grouping the triples up again
|
| 36 |
+
# * finally sorting the distinct triples
|
| 37 |
+
|
| 38 |
+
# df = df.copy()
|
| 39 |
+
df = df.drop_duplicates()
|
| 40 |
+
df["triples"] = df.triples.apply(ast.literal_eval)
|
| 41 |
+
df = df.explode("triples")
|
| 42 |
+
df["triples"] = df.triples.apply(triple_to_hashable)
|
| 43 |
+
df = df.drop_duplicates()
|
| 44 |
+
df = df.groupby("text").agg(list)
|
| 45 |
+
df = df.reset_index(drop=False)
|
| 46 |
+
df["triples"] = df.triples.apply(set).apply(sorted)
|
| 47 |
+
|
| 48 |
+
return df
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_original_text(
|
| 52 |
+
aste_file: str,
|
| 53 |
+
sem_eval_file: str,
|
| 54 |
+
debug: bool = False,
|
| 55 |
+
) -> pd.DataFrame:
|
| 56 |
+
approximate_matches = 0
|
| 57 |
+
|
| 58 |
+
def best_match(text: str) -> str:
|
| 59 |
+
comparison = text.replace(" ", "")
|
| 60 |
+
if comparison in comparison_to_text:
|
| 61 |
+
return comparison_to_text[comparison]
|
| 62 |
+
|
| 63 |
+
nonlocal approximate_matches
|
| 64 |
+
approximate_matches += 1
|
| 65 |
+
distances = sem_eval_comparison.apply(
|
| 66 |
+
lambda se_comparison: Levenshtein.distance(comparison, se_comparison)
|
| 67 |
+
)
|
| 68 |
+
best = sem_eval_df.iloc[distances.argmin()].text
|
| 69 |
+
return best
|
| 70 |
+
|
| 71 |
+
sem_eval_df = read_sem_eval_file(sem_eval_file)
|
| 72 |
+
sem_eval_comparison = sem_eval_df.text.str.replace(" ", "")
|
| 73 |
+
comparison_to_text = dict(zip(sem_eval_comparison, sem_eval_df.text))
|
| 74 |
+
|
| 75 |
+
aste_df = read_aste_file(aste_file)
|
| 76 |
+
aste_df = aste_df.rename(columns={"text": "preprocessed_text"})
|
| 77 |
+
aste_df["text"] = aste_df.preprocessed_text.apply(best_match)
|
| 78 |
+
if debug:
|
| 79 |
+
print(f"Read {len(aste_df):,} rows")
|
| 80 |
+
print(f"Had to use {approximate_matches:,} approximate matches")
|
| 81 |
+
return aste_df[["text", "preprocessed_text", "triples"]]
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def edit(original: str, preprocessed: str) -> list[Optional[int]]:
|
| 85 |
+
indices: list[Optional[int]] = list(range(len(preprocessed)))
|
| 86 |
+
for operation, _source_position, destination_position in Levenshtein.editops(
|
| 87 |
+
preprocessed, original
|
| 88 |
+
):
|
| 89 |
+
if operation == "replace":
|
| 90 |
+
indices[destination_position] = None
|
| 91 |
+
elif operation == "insert":
|
| 92 |
+
indices.insert(destination_position, None)
|
| 93 |
+
elif operation == "delete":
|
| 94 |
+
del indices[destination_position]
|
| 95 |
+
return indices
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def has_unmapped(indicies: list[Optional[int]]) -> bool:
|
| 99 |
+
return any(index is None for index in indicies)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def has_unmapped_non_space(row: pd.Series) -> bool:
|
| 103 |
+
letter_and_index: list[tuple[str, Optional[int]]] = list(
|
| 104 |
+
zip(row.text, row.text_indices)
|
| 105 |
+
)
|
| 106 |
+
return any(index is None for letter, index in letter_and_index if letter != " ")
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
@dataclass(frozen=True)
|
| 110 |
+
class WordSpan:
|
| 111 |
+
start_index: int
|
| 112 |
+
end_index: int # this is the letter after the end
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class CharacterIndices(TypedDict):
|
| 116 |
+
aspect_start_index: int
|
| 117 |
+
aspect_end_index: int
|
| 118 |
+
aspect_term: str
|
| 119 |
+
opinion_start_index: int
|
| 120 |
+
opinion_end_index: int
|
| 121 |
+
opinion_term: str
|
| 122 |
+
sentiment: str
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
word_pattern = re.compile(r"\S+")
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def row_to_character_indices(row: pd.Series) -> pd.Series:
|
| 129 |
+
try:
|
| 130 |
+
return pd.Series(
|
| 131 |
+
to_character_indices(
|
| 132 |
+
triplet=row.triples,
|
| 133 |
+
preprocessed=row.preprocessed_text,
|
| 134 |
+
text=row.text,
|
| 135 |
+
text_indices=row.text_indices,
|
| 136 |
+
)
|
| 137 |
+
)
|
| 138 |
+
except:
|
| 139 |
+
print(f"failed to process row {row.name}")
|
| 140 |
+
print(row)
|
| 141 |
+
raise
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def to_character_indices(
|
| 145 |
+
*,
|
| 146 |
+
triplet: tuple[tuple[int], tuple[int], str],
|
| 147 |
+
preprocessed: str,
|
| 148 |
+
text: str,
|
| 149 |
+
text_indices: list[Optional[int]],
|
| 150 |
+
) -> CharacterIndices:
|
| 151 |
+
def find_start_index(span: WordSpan) -> int:
|
| 152 |
+
# the starting letter in the lookup can be missing or None
|
| 153 |
+
# this would cause a lookup failure
|
| 154 |
+
# to recover from this we can find the following letter index and backtrack
|
| 155 |
+
for index in range(span.start_index, span.end_index):
|
| 156 |
+
try:
|
| 157 |
+
text_index = text_indices.index(index)
|
| 158 |
+
for _ in range(index - span.start_index):
|
| 159 |
+
if text_index - 1 <= 0:
|
| 160 |
+
break
|
| 161 |
+
if text_indices[text_index - 1] is not None:
|
| 162 |
+
break
|
| 163 |
+
text_index -= 1
|
| 164 |
+
return text_index
|
| 165 |
+
except ValueError:
|
| 166 |
+
pass
|
| 167 |
+
# not present in list
|
| 168 |
+
raise ValueError(f"cannot find any part of {span}")
|
| 169 |
+
|
| 170 |
+
def find_end_index(span: WordSpan) -> int:
|
| 171 |
+
# the ending letter in the lookup can be missing or None
|
| 172 |
+
# this would cause a lookup failure
|
| 173 |
+
# to recover from this we can find the preceding letter index and backtrack
|
| 174 |
+
for index in range(span.end_index - 1, span.start_index - 1, -1):
|
| 175 |
+
try:
|
| 176 |
+
text_index = text_indices.index(index)
|
| 177 |
+
for _ in range(span.end_index - index):
|
| 178 |
+
if text_index + 1 >= len(text_indices):
|
| 179 |
+
break
|
| 180 |
+
if text_indices[text_index + 1] is not None:
|
| 181 |
+
break
|
| 182 |
+
text_index += 1
|
| 183 |
+
return text_index
|
| 184 |
+
except ValueError:
|
| 185 |
+
pass
|
| 186 |
+
# not present in list
|
| 187 |
+
raise ValueError(f"cannot find any part of {span}")
|
| 188 |
+
|
| 189 |
+
def to_indices(span: tuple[int]) -> tuple[int, int]:
|
| 190 |
+
word_start = span[0]
|
| 191 |
+
word_start_span = word_indices[word_start]
|
| 192 |
+
|
| 193 |
+
word_end = span[-1]
|
| 194 |
+
word_end_span = word_indices[word_end]
|
| 195 |
+
|
| 196 |
+
start_index = find_start_index(word_start_span)
|
| 197 |
+
end_index = find_end_index(word_end_span)
|
| 198 |
+
return start_index, end_index
|
| 199 |
+
|
| 200 |
+
aspect_span, opinion_span, sentiment = triplet
|
| 201 |
+
assert is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}"
|
| 202 |
+
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}"
|
| 203 |
+
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}"
|
| 204 |
+
|
| 205 |
+
word_indices = [
|
| 206 |
+
WordSpan(start_index=match.start(), end_index=match.end())
|
| 207 |
+
for match in word_pattern.finditer(preprocessed)
|
| 208 |
+
]
|
| 209 |
+
|
| 210 |
+
aspect_start_index, aspect_end_index = to_indices(aspect_span)
|
| 211 |
+
aspect_term = text[aspect_start_index : aspect_end_index + 1]
|
| 212 |
+
opinion_start_index, opinion_end_index = to_indices(opinion_span)
|
| 213 |
+
opinion_term = text[opinion_start_index : opinion_end_index + 1]
|
| 214 |
+
|
| 215 |
+
nice_sentiment = {
|
| 216 |
+
"POS": "positive",
|
| 217 |
+
"NEG": "negative",
|
| 218 |
+
"NEU": "neutral",
|
| 219 |
+
}[sentiment]
|
| 220 |
+
|
| 221 |
+
return {
|
| 222 |
+
"aspect_start_index": aspect_start_index,
|
| 223 |
+
"aspect_end_index": aspect_end_index,
|
| 224 |
+
"aspect_term": aspect_term,
|
| 225 |
+
"opinion_start_index": opinion_start_index,
|
| 226 |
+
"opinion_end_index": opinion_end_index,
|
| 227 |
+
"opinion_term": opinion_term,
|
| 228 |
+
"sentiment": nice_sentiment,
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def convert_sem_eval_text(
|
| 233 |
+
aste_file: str,
|
| 234 |
+
sem_eval_file: str,
|
| 235 |
+
debug: bool = False,
|
| 236 |
+
) -> pd.DataFrame:
|
| 237 |
+
df = get_original_text(
|
| 238 |
+
aste_file=aste_file,
|
| 239 |
+
sem_eval_file=sem_eval_file,
|
| 240 |
+
debug=debug,
|
| 241 |
+
)
|
| 242 |
+
df = df.explode("triples")
|
| 243 |
+
df = df.reset_index(drop=False)
|
| 244 |
+
df["text_indices"] = df.apply(
|
| 245 |
+
lambda row: edit(original=row.text, preprocessed=row.preprocessed_text),
|
| 246 |
+
axis="columns",
|
| 247 |
+
)
|
| 248 |
+
df = df.merge(
|
| 249 |
+
df.apply(row_to_character_indices, axis="columns"),
|
| 250 |
+
left_index=True,
|
| 251 |
+
right_index=True,
|
| 252 |
+
)
|
| 253 |
+
df = df.drop(columns=["preprocessed_text", "triples", "text_indices"])
|
| 254 |
+
return df
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def convert_aste_text(aste_file: str) -> pd.DataFrame:
|
| 258 |
+
df = read_aste_file(aste_file)
|
| 259 |
+
df = df.explode("triples")
|
| 260 |
+
df = df.reset_index(drop=False)
|
| 261 |
+
df = df.merge(
|
| 262 |
+
df.apply(aste_row_to_character_indices, axis="columns"),
|
| 263 |
+
left_index=True,
|
| 264 |
+
right_index=True,
|
| 265 |
+
)
|
| 266 |
+
df = df.drop(columns=["triples"])
|
| 267 |
+
return df
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def aste_row_to_character_indices(row: pd.Series) -> pd.Series:
|
| 271 |
+
try:
|
| 272 |
+
return pd.Series(
|
| 273 |
+
aste_to_character_indices(
|
| 274 |
+
triplet=row.triples,
|
| 275 |
+
text=row.text,
|
| 276 |
+
)
|
| 277 |
+
)
|
| 278 |
+
except:
|
| 279 |
+
print(f"failed to process row {row.name}")
|
| 280 |
+
print(row)
|
| 281 |
+
raise
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def is_sequential(span: tuple[int]) -> bool:
|
| 285 |
+
return all(span[index + 1] - span[index] == 1 for index in range(len(span) - 1))
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
def aste_to_character_indices(
|
| 289 |
+
*,
|
| 290 |
+
triplet: tuple[tuple[int], tuple[int], str],
|
| 291 |
+
text: str,
|
| 292 |
+
) -> CharacterIndices:
|
| 293 |
+
def to_indices(span: tuple[int]) -> tuple[int, int]:
|
| 294 |
+
word_start = span[0]
|
| 295 |
+
word_start_span = word_indices[word_start]
|
| 296 |
+
|
| 297 |
+
word_end = span[-1]
|
| 298 |
+
word_end_span = word_indices[word_end]
|
| 299 |
+
|
| 300 |
+
return word_start_span.start_index, word_end_span.end_index - 1
|
| 301 |
+
|
| 302 |
+
aspect_span, opinion_span, sentiment = triplet
|
| 303 |
+
assert is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}"
|
| 304 |
+
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}"
|
| 305 |
+
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}"
|
| 306 |
+
|
| 307 |
+
word_indices = [
|
| 308 |
+
WordSpan(start_index=match.start(), end_index=match.end())
|
| 309 |
+
for match in word_pattern.finditer(text)
|
| 310 |
+
]
|
| 311 |
+
|
| 312 |
+
aspect_start_index, aspect_end_index = to_indices(aspect_span)
|
| 313 |
+
aspect_term = text[aspect_start_index : aspect_end_index + 1]
|
| 314 |
+
opinion_start_index, opinion_end_index = to_indices(opinion_span)
|
| 315 |
+
opinion_term = text[opinion_start_index : opinion_end_index + 1]
|
| 316 |
+
|
| 317 |
+
nice_sentiment = {
|
| 318 |
+
"POS": "positive",
|
| 319 |
+
"NEG": "negative",
|
| 320 |
+
"NEU": "neutral",
|
| 321 |
+
}[sentiment]
|
| 322 |
+
|
| 323 |
+
return {
|
| 324 |
+
"aspect_start_index": aspect_start_index,
|
| 325 |
+
"aspect_end_index": aspect_end_index,
|
| 326 |
+
"aspect_term": aspect_term,
|
| 327 |
+
"opinion_start_index": opinion_start_index,
|
| 328 |
+
"opinion_end_index": opinion_end_index,
|
| 329 |
+
"opinion_term": opinion_term,
|
| 330 |
+
"sentiment": nice_sentiment,
|
| 331 |
+
}
|