import datasets import pyarrow as pa import pyarrow.parquet as pq DESCRIPTION = "The dataset contains Airbnb data from 80 capitals and major cities all around the world." # DATA_URL="https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/all_airbnb.parquet" DATA_DIRS = ["benchmark", "all"] RESOLUTIONS=["8","9","10"] class AirbnbDatasetConfig(datasets.BuilderConfig): """BuilderConfig """ def __init__(self, data_url, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(AirbnbDatasetConfig, self).__init__(**kwargs) self.data_url = data_url class AirbnbDataset(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = AirbnbDatasetConfig DEFAULT_CONFIG_NAME = "8" BUILDER_CONFIGS = [ AirbnbDatasetConfig( name = res, description = f"This is the official train test split for Airbnb Datatset in h3 resolution = {res}. Benchmark cities are: Paris, London, Rome, Melbourne, New York City, Amsterdam.", data_url={ "train": f"https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/res_{res}/airbnb_train.parquet", "test": f"https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/res_{res}/airbnb_test.parquet" } ) for res in RESOLUTIONS ] BUILDER_CONFIGS = BUILDER_CONFIGS + [ AirbnbDatasetConfig( name="all", description=f"This is a raw, full version of Airbnb Dataset."+DESCRIPTION, data_url={"train":f"https://huggingface.co/datasets/kraina/airbnb_multicity/resolve/main/data/all_airbnb.parquet"} )] def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=self.config.description, homepage="https://insideairbnb.com/", citation="", # This defines the different columns of the dataset and their types features=datasets.Features( { "id": datasets.Value(dtype="int64"), "name": datasets.Value(dtype="string"), "host_id": datasets.Value(dtype="int64"), "host_name": datasets.Value(dtype="string"), "latitude": datasets.Value(dtype="float64"), "longitude": datasets.Value(dtype="float64"), "neighbourhood": datasets.Value(dtype="string"), "room_type":datasets.Value(dtype="string"), "price":datasets.Value(dtype="float64"), "minimum_nights":datasets.Value(dtype="int64"), "number_of_reviews":datasets.Value(dtype="int64"), "last_review": datasets.Value(dtype="string"), "reviews_per_month":datasets.Value(dtype="float64"), "calculated_host_listings_count":datasets.Value(dtype="int64"), "availability_365":datasets.Value(dtype="int64"), "number_of_reviews_ltm":datasets.Value(dtype="int64"), "city":datasets.Value(dtype="string"), "date":datasets.Value(dtype="string"), # These are the features of your dataset like images, labels ... } ), ) def _split_generators(self, dl_manager: datasets.download.DownloadManager): downloaded_files = dl_manager.download(self.config.data_url) if self.config.name == "all": return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files["train"]}) ] else: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'filepath': downloaded_files["test"]}) ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_tables(self, filepath): with open(filepath, mode="rb") as f: parquet_file = pq.ParquetFile(source=filepath) for batch_idx, record_batch in enumerate(parquet_file.iter_batches()): df = record_batch.to_pandas() df.reset_index(drop=True, inplace=True) pa_table = pa.Table.from_pandas(df) yield f"{batch_idx}", pa_table