Datasets:
File size: 4,572 Bytes
a0074fe 8cd189a a0074fe 8cd189a a0074fe 8cd189a 58b9530 8cd189a acb6d9d 58b9530 8cd189a 58b9530 8cd189a 58b9530 a550fe3 58b9530 a550fe3 58b9530 8cd189a 58b9530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
license: mit
configs:
- config_name: table
data_files: tatqa_table.jsonl
- config_name: test_query
data_files: tatqa_query.jsonl
task_categories:
- table-question-answering
---
π [Paper](https://arxiv.org/abs/2504.01346) | π¨π»βπ» [Code](https://github.com/jiaruzouu/T-RAG)
## π Introduction
Retrieval-Augmented Generation (RAG) has become a key paradigm to enhance Large Language Models (LLMs) with external knowledge. While most RAG systems focus on **text corpora**, real-world information is often stored in **tables** across web pages, Wikipedia, and relational databases. Existing methods struggle to retrieve and reason across **multiple heterogeneous tables**.
This repository provides the implementation of **T-RAG**, a novel table-corpora-aware RAG framework featuring:
- **Hierarchical Memory Index** β organizes heterogeneous table knowledge at multiple granularities.
- **Multi-Stage Retrieval** β coarse-to-fine retrieval combining clustering, subgraph reasoning, and PageRank.
- **Graph-Aware Prompting** β injects relational priors into LLMs for structured tabular reasoning.
- **MultiTableQA Benchmark** β a large-scale dataset with **57,193 tables** and **23,758 questions** across various tabular tasks.
For MultiTableQA, we release a comprehensive benchmark, including five different datasets covering table fact-checking, single-hop QA, and multi-hop QA:
| Dataset | Link |
|-----------------------|------|
| MultiTableQA-TATQA | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TATQA) |
| MultiTableQA-TabFact | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TabFact) |
| MultiTableQA-SQA | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_SQA) |
| MultiTableQA-WTQ | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_WTQ) |
| MultiTableQA-HybridQA | π€ [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_HybridQA)|
MultiTableQA extends the traditional single-table QA setting into a multi-table retrieval and question answering benchmark, enabling more realistic and challenging evaluations.
---
## β¨ Sample Usage
To get started with the T-RAG framework and the MultiTableQA benchmark, follow these steps.
### π Installation
```bash
git clone https://github.com/jiaruzouu/T-RAG.git
cd T-RAG
conda create -n trag python=3.11.9
conda activate trag
# Install dependencies
pip install -r requirements.txt
```
### 1. MultiTableQA Data Preparation
To download and preprocess the **MultiTableQA** benchmark:
```bash
cd table2graph
bash scripts/prepare_data.sh
```
This script will automatically fetch the source tables, apply decomposition (row/column splitting), and generate the benchmark splits.
### 2. Run T-RAG Retrieval
To run hierarchical index construction and multi-stage retrieval:
**Stage 1 & 2: Table to Graph Construction & Coarse-grained Multi-way Retrieval**
Stages 1 & 2 include:
- Table Linearization
- Multi-way Feature Extraction
- Hypergraph Construction by Multi-way Clustering
- Typical Node Selection for Efficient Table Retrieval
- Query-Cluster Assignment
To run this,
```bash
cd src
cd table2graph
bash scripts/table_cluster_run.sh # or python scripts/table_cluster_run.py
```
**Stage 3: Fine-grained sub-graph Retrieval**
Stage 3 includes:
- Local Subgraph Construction
- Iterative Personalized PageRank for Retrieval.
To run this,
```bash
cd src
cd table2graph
python scripts/subgraph_retrieve_run.py
```
*Note: Our method supports different embedding methods such as E5, contriever, sentence-transformer, etc.**
### 3. Downstream Inference with LLMs
Evaluate T-RAG with an (open/closed-source) LLM of your choice (e.g., GPT-4o, Claude-3.5, Qwen):
For Closed-source LLM, please first insert your key under `key.json`
```json
{
"openai": "<YOUR_OPENAI_API_KEY>",
"claude": "<YOUR_CLAUDE_API_KEY>"
}
```
To run end-to-end model inference and evaluation,
```bash
cd src
cd downstream_inference
bash scripts/overall_run.sh
```
---
# Citation
If you find our work useful, please cite:
```bibtex
@misc{zou2025rag,
title={RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking},
author={Jiaru Zou and Dongqi Fu and Sirui Chen and Xinrui He and Zihao Li and Yada Zhu and Jiawei Han and Jingrui He},
year={2025},
eprint={2504.01346},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.01346},
}
``` |