--- license: mit task_categories: - table-question-answering configs: - config_name: table data_files: sqa_table.jsonl - config_name: test_query data_files: sqa_query.jsonl --- 📄 [Paper](https://huggingface.co/papers/2504.01346) | 👨🏻‍💻 [Code](https://github.com/jiaruzouu/T-RAG) For MultiTableQA, we release a comprehensive benchmark, including five different datasets covering table fact-checking, single-hop QA, and multi-hop QA: | Dataset | Link | |-----------------------|------| | MultiTableQA-TATQA | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TATQA) | | MultiTableQA-TabFact | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TabFact) | | MultiTableQA-SQA | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_SQA) | | MultiTableQA-WTQ | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_WTQ) | | MultiTableQA-HybridQA | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_HybridQA)| MultiTableQA extends the traditional single-table QA setting into a multi-table retrieval and question answering benchmark, enabling more realistic and challenging evaluations. ## Sample Usage This dataset (`MultiTableQA-SQA`) is part of the larger **MultiTableQA** benchmark. To prepare the full benchmark, you can follow these steps from the official T-RAG GitHub repository. First, clone the repository and set up the environment: ```bash git clone https://github.com/jiaruzouu/T-RAG.git cd T-RAG conda create -n trag python=3.11.9 conda activate trag # Install dependencies pip install -r requirements.txt ``` Then, navigate to the `table2graph` directory and run the data preparation script: ```bash cd table2graph bash scripts/prepare_data.sh ``` This script will automatically fetch the source tables, apply decomposition (row/column splitting), and generate the benchmark splits, including the `MultiTableQA-SQA` data available in this repository. --- # Citation If you find our work useful, please cite: ```bibtex @misc{zou2025rag, title={RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking}, author={Jiaru Zou and Dongqi Fu and Sirui Chen and Xinrui He and Zihao Li and Yada Zhu and Jiawei Han and Jingrui He}, year={2025}, eprint={2504.01346}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.01346}, } ```