--- license: mit configs: - config_name: table data_files: hybridqa_table.jsonl - config_name: test_query data_files: hybridqa_query.jsonl task_categories: - table-question-answering --- This Hugging Face dataset repository contains **MultiTableQA-HybridQA**, one of the datasets released as part of the comprehensive **MultiTableQA** benchmark, introduced in the paper [RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking](https://arxiv.org/abs/2504.01346). 📄 [Paper](https://arxiv.org/abs/2504.01346) | 👨🏻‍💻 [Code](https://github.com/jiaruzouu/T-RAG) For MultiTableQA, we release a comprehensive benchmark, including five different datasets covering table fact-checking, single-hop QA, and multi-hop QA: | Dataset | Link | |-----------------------|------| | MultiTableQA-TATQA | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TATQA) | | MultiTableQA-TabFact | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TabFact) | | MultiTableQA-SQA | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_SQA) | | MultiTableQA-WTQ | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_WTQ) | | MultiTableQA-HybridQA | 🤗 [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_HybridQA)| MultiTableQA extends the traditional single-table QA setting into a multi-table retrieval and question answering benchmark, enabling more realistic and challenging evaluations. --- ### Sample Usage This section provides a quick guide to setting up the environment, preparing the MultiTableQA data, running T-RAG retrieval, and performing downstream inference with LLMs, based on the official [T-RAG GitHub repository](https://github.com/jiaruzouu/T-RAG). #### 1. Installation First, clone the repository and install the necessary dependencies: ```bash git clone https://github.com/jiaruzouu/T-RAG.git cd T-RAG conda create -n trag python=3.11.9 conda activate trag # Install dependencies pip install -r requirements.txt ``` #### 2. MultiTableQA Data Preparation To download and preprocess the MultiTableQA benchmark: ```bash cd table2graph bash scripts/prepare_data.sh ``` This script will automatically fetch the source tables, apply decomposition (row/column splitting), and generate the benchmark splits. #### 3. Run T-RAG Retrieval To run hierarchical index construction and multi-stage retrieval: **Stage 1 & 2: Table to Graph Construction & Coarse-grained Multi-way Retrieval** ```bash cd src cd table2graph bash scripts/table_cluster_run.sh # or python scripts/table_cluster_run.py ``` **Stage 3: Fine-grained sub-graph Retrieval** ```bash cd src cd table2graph python scripts/subgraph_retrieve_run.py ``` *Note: Our method supports different embedding methods such as E5, contriever, sentence-transformer, etc.* #### 4. Downstream Inference with LLMs Evaluate T-RAG with an (open/closed-source) LLM of your choice (e.g., GPT-4o, Claude-3.5, Qwen): For Closed-source LLM, please first insert your key under `key.json`: ```json { "openai": "", "claude": "" } ``` To run end-to-end model inference and evaluation: ```bash cd src cd downstream_inference bash scripts/overall_run.sh ``` --- # Citation If you find our work useful, please cite: ```bibtex @misc{zou2025rag, title={RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking}, author={Jiaru Zou and Dongqi Fu and Sirui Chen and Xinrui He and Zihao Li and Yada Zhu and Jiawei Han and Jingrui He}, year={2025}, eprint={2504.01346}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.01346}, } ```