#!/usr/bin/env python3 """ Short-MetaWorld Dataset Loader Loads the dataset with proper structure preservation and task prompts. """ import os import pickle import json import glob from pathlib import Path from PIL import Image import torch import torchvision.transforms as T from torch.utils.data import Dataset class ShortMetaWorldDataset(Dataset): """ Short-MetaWorld dataset loader that preserves the original structure. Args: data_root (str): Path to the dataset root directory task_list (list): List of tasks to load (default: all available tasks) image_size (int): Target image size for transforms (default: 224) transform (callable): Optional custom transform load_prompts (bool): Whether to load task prompts (default: True) """ def __init__(self, data_root, task_list=None, image_size=224, transform=None, load_prompts=True): self.data_root = Path(data_root) self.image_size = image_size # Load task prompts self.prompts = {} if load_prompts: prompt_file = self.data_root / "mt50_task_prompts.json" if prompt_file.exists(): with open(prompt_file, 'r') as f: self.prompts = json.load(f) print(f"šŸ“– Loaded {len(self.prompts)} task prompts") else: print("āš ļø Task prompts not found, using fallback prompts") # Set up paths self.img_root = self.data_root / "short-MetaWorld" / "short-MetaWorld" / "img_only" self.data_pkl_root = self.data_root / "short-MetaWorld" / "r3m-processed" / "r3m_MT10_20" # Discover available tasks available_tasks = [] if self.data_pkl_root.exists(): for pkl_file in self.data_pkl_root.glob("*.pkl"): task_name = pkl_file.stem if (self.img_root / task_name).exists(): available_tasks.append(task_name) # Filter tasks if task_list provided if task_list is not None: self.tasks = [task for task in task_list if task in available_tasks] else: self.tasks = available_tasks print(f"šŸ“Š Loading {len(self.tasks)} tasks: {self.tasks}") # Default transform if transform is None: self.transform = T.Compose([ T.Resize((image_size, image_size)), T.ToTensor(), ]) else: self.transform = transform # Load all trajectories self.trajectories = self._load_trajectories() print(f"āœ… Loaded {len(self.trajectories)} trajectory steps") def _load_trajectories(self): """Load all trajectory data""" all_trajectories = [] for task in self.tasks: # Load pickle data pkl_path = self.data_pkl_root / f"{task}.pkl" if not pkl_path.exists(): print(f"āš ļø Pickle file not found: {pkl_path}") continue with open(pkl_path, "rb") as f: data = pickle.load(f) # Get image directories task_img_dir = self.img_root / task if not task_img_dir.exists(): print(f"āš ļø Image directory not found: {task_img_dir}") continue # Process each trajectory traj_dirs = sorted(task_img_dir.glob("*"), key=lambda x: int(x.name)) for traj_idx, traj_dir in enumerate(traj_dirs): if traj_idx >= len(data['actions']): continue # Get image paths img_paths = sorted(traj_dir.glob("*.jpg"), key=lambda x: int(x.stem)) num_steps = len(data['actions'][traj_idx]) num_images = len(img_paths) # Use minimum length to handle mismatched data min_steps = min(num_images, num_steps) if min_steps < 1: continue # Create trajectory entries for step_idx in range(min_steps): trajectory_entry = { 'task_name': task, 'trajectory_id': traj_idx, 'step_id': step_idx, 'image_path': str(img_paths[step_idx]), 'state': data['state'][traj_idx][step_idx][:7], # First 7 dims 'action': data['actions'][traj_idx][step_idx], 'prompt': self._get_prompt(task) } all_trajectories.append(trajectory_entry) return all_trajectories def _get_prompt(self, task_name): """Get prompt for a task""" if task_name in self.prompts: # Use simple prompt by default return self.prompts[task_name].get('simple', f"Perform the task: {task_name.replace('-', ' ')}") else: return f"Perform the task: {task_name.replace('-', ' ')}" def get_task_info(self, task_name): """Get comprehensive task information""" if task_name in self.prompts: return self.prompts[task_name] return {"simple": f"Perform the task: {task_name.replace('-', ' ')}"} def get_available_tasks(self): """Get list of available tasks""" return self.tasks.copy() def get_dataset_stats(self): """Get dataset statistics""" task_counts = {} for traj in self.trajectories: task = traj['task_name'] task_counts[task] = task_counts.get(task, 0) + 1 return { 'total_steps': len(self.trajectories), 'num_tasks': len(self.tasks), 'task_step_counts': task_counts, 'tasks': self.tasks } def __len__(self): return len(self.trajectories) def __getitem__(self, idx): """Get a single trajectory step""" traj = self.trajectories[idx] # Load and transform image image = Image.open(traj['image_path']).convert("RGB") image_tensor = self.transform(image) # Convert to tensors state = torch.tensor(traj['state'], dtype=torch.float32) action = torch.tensor(traj['action'], dtype=torch.float32) return { 'image': image_tensor, 'state': state, 'action': action, 'prompt': traj['prompt'], 'task_name': traj['task_name'], 'trajectory_id': traj['trajectory_id'], 'step_id': traj['step_id'] } # Example usage functions def load_short_metaworld(data_root, tasks=None, image_size=224): """ Convenience function to load the dataset. Args: data_root (str): Path to dataset root tasks (list): List of tasks to load (None for all) image_size (int): Image size for transforms Returns: ShortMetaWorldDataset: The loaded dataset """ return ShortMetaWorldDataset( data_root=data_root, task_list=tasks, image_size=image_size ) def get_mt10_tasks(): """Get the MT10 task list""" return [ "reach-v2", "push-v2", "pick-place-v2", "door-open-v2", "drawer-open-v2", "drawer-close-v2", "button-press-topdown-v2", "button-press-v2", "button-press-wall-v2", "button-press-topdown-wall-v2" ] def demo_usage(): """Demonstrate how to use the dataset""" print("šŸ“– Short-MetaWorld Dataset Usage Example") print("=" * 50) # Load dataset dataset = load_short_metaworld("./", tasks=get_mt10_tasks()) # Print stats stats = dataset.get_dataset_stats() print(f"šŸ“Š Dataset Statistics:") print(f" Total steps: {stats['total_steps']}") print(f" Number of tasks: {stats['num_tasks']}") print(f" Available tasks: {stats['tasks']}") # Get a sample if len(dataset) > 0: sample = dataset[0] print(f"\nšŸ“‹ Sample data:") print(f" Image shape: {sample['image'].shape}") print(f" State shape: {sample['state'].shape}") print(f" Action shape: {sample['action'].shape}") print(f" Task: {sample['task_name']}") print(f" Prompt: {sample['prompt']}") if __name__ == "__main__": demo_usage()