blaiszik commited on
Commit
1ae66c9
·
verified ·
1 Parent(s): c40b3a0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +78 -19
README.md CHANGED
@@ -1,21 +1,80 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: Impurity
5
- dtype: string
6
- - name: Host
7
- dtype: string
8
- - name: Effective_charge_regression
9
- dtype: float64
10
- splits:
11
- - name: train
12
- num_bytes: 978
13
- num_examples: 49
14
- download_size: 2326
15
- dataset_size: 978
16
- configs:
17
- - config_name: default
18
- data_files:
19
- - split: train
20
- path: data/train-*
21
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - tabular-regression
5
+ - tabular-classification
6
+ tags:
7
+ - materials-science
8
+ - chemistry
9
+ - foundry-ml
10
+ - scientific-data
11
+ size_categories:
12
+ - 1K<n<10K
 
 
 
 
 
 
 
 
13
  ---
14
+
15
+ # Exploring effective charge in electromigration using machine learning
16
+
17
+ Dataset containing effective charge values for 49 metal host-impurity pairs
18
+
19
+ ## Dataset Information
20
+
21
+ - **Source**: [Foundry-ML](https://github.com/MLMI2-CSSI/foundry)
22
+ - **DOI**: [10.18126/abxi-r7eb](https://doi.org/10.18126/abxi-r7eb)
23
+ - **Year**: 2022
24
+ - **Authors**: Liu, Yu-chen, Afflerbach, Ben, Jacobs, Ryan, Lin, Shih-kang, Morgan, Dane
25
+ - **Data Type**: tabular
26
+
27
+ ### Fields
28
+
29
+ | Field | Role | Description | Units |
30
+ |-------|------|-------------|-------|
31
+ | Impurity | input | Impurity element | |
32
+ | Host | input | Host element | |
33
+ | Effective_charge_regression | target | Alloy effective charge values (target) | |
34
+
35
+
36
+ ### Splits
37
+
38
+ - **train**: train
39
+
40
+
41
+ ## Usage
42
+
43
+ ### With Foundry-ML (recommended for materials science workflows)
44
+
45
+ ```python
46
+ from foundry import Foundry
47
+
48
+ f = Foundry()
49
+ dataset = f.get_dataset("10.18126/abxi-r7eb")
50
+ X, y = dataset.get_as_dict()['train']
51
+ ```
52
+
53
+ ### With HuggingFace Datasets
54
+
55
+ ```python
56
+ from datasets import load_dataset
57
+
58
+ dataset = load_dataset("electromigration_v1.1")
59
+ ```
60
+
61
+ ## Citation
62
+
63
+ ```bibtex
64
+ @misc{https://doi.org/10.18126/abxi-r7eb
65
+ doi = {10.18126/abxi-r7eb}
66
+ url = {https://doi.org/10.18126/abxi-r7eb}
67
+ author = {Liu, Yu-chen and Afflerbach, Ben and Jacobs, Ryan and Lin, Shih-kang and Morgan, Dane}
68
+ title = {Exploring effective charge in electromigration using machine learning}
69
+ keywords = {machine learning, foundry}
70
+ publisher = {Materials Data Facility}
71
+ year = {root=2022}}
72
+ ```
73
+
74
+ ## License
75
+
76
+ CC-BY 4.0
77
+
78
+ ---
79
+
80
+ *This dataset was exported from [Foundry-ML](https://github.com/MLMI2-CSSI/foundry), a platform for materials science datasets.*