Upload hupd.py
Browse files
hupd.py
ADDED
|
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
The Harvard USPTO Patent Dataset (HUPD) is a large-scale, well-structured, and multi-purpose corpus
|
| 3 |
+
of English-language patent applications filed to the United States Patent and Trademark Office (USPTO)
|
| 4 |
+
between 2004 and 2018. With more than 4.5 million patent documents, HUPD is two to three times larger
|
| 5 |
+
than comparable corpora. Unlike other NLP patent datasets, HUPD contains the inventor-submitted versions
|
| 6 |
+
of patent applications, not the final versions of granted patents, allowing us to study patentability at
|
| 7 |
+
the time of filing using NLP methods for the first time.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from __future__ import absolute_import, division, print_function
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
import datetime
|
| 14 |
+
import pandas as pd
|
| 15 |
+
import numpy as np
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
try:
|
| 18 |
+
import ujson as json
|
| 19 |
+
except:
|
| 20 |
+
import json
|
| 21 |
+
|
| 22 |
+
import datasets
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
_CITATION = """\
|
| 26 |
+
@InProceedings{suzgun2021:hupd,
|
| 27 |
+
title = {The Harvard USPTO Patent Dataset},
|
| 28 |
+
authors={Mirac Suzgun and Suproteem Sarkar and Luke Melas-Kyriazi and Scott Kominers and Stuart Shieber},
|
| 29 |
+
year={2021}
|
| 30 |
+
}
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
_DESCRIPTION = """
|
| 34 |
+
The Harvard USPTO Patent Dataset (HUPD) is a large-scale, well-structured, and multi-purpose corpus
|
| 35 |
+
of English-language patent applications filed to the United States Patent and Trademark Office (USPTO)
|
| 36 |
+
between 2004 and 2018. With more than 4.5 million patent documents, HUPD is two to three times larger
|
| 37 |
+
than comparable corpora. Unlike other NLP patent datasets, HUPD contains the inventor-submitted versions
|
| 38 |
+
of patent applications, not the final versions of granted patents, allowing us to study patentability at
|
| 39 |
+
the time of filing using NLP methods for the first time.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
RANDOM_STATE = 1729
|
| 43 |
+
|
| 44 |
+
_FEATURES = [
|
| 45 |
+
"patent_number",
|
| 46 |
+
"decision",
|
| 47 |
+
"title",
|
| 48 |
+
"abstract",
|
| 49 |
+
"claims",
|
| 50 |
+
"background",
|
| 51 |
+
"summary",
|
| 52 |
+
"description",
|
| 53 |
+
"cpc_label",
|
| 54 |
+
"ipc_label",
|
| 55 |
+
"filing_date",
|
| 56 |
+
"patent_issue_date",
|
| 57 |
+
"date_published",
|
| 58 |
+
"examiner_id"
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def str_to_date(s):
|
| 63 |
+
"""A helper function to convert strings to dates"""
|
| 64 |
+
return datetime.datetime.strptime(s, '%Y-%m-%d')
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class PatentsConfig(datasets.BuilderConfig):
|
| 68 |
+
"""BuilderConfig for Patents"""
|
| 69 |
+
|
| 70 |
+
def __init__(
|
| 71 |
+
self,
|
| 72 |
+
metadata_url: str,
|
| 73 |
+
data_url: str,
|
| 74 |
+
data_dir: str,
|
| 75 |
+
ipcr_label: str = None,
|
| 76 |
+
cpc_label: str = None,
|
| 77 |
+
train_filing_start_date: str = None,
|
| 78 |
+
train_filing_end_date: str = None,
|
| 79 |
+
val_filing_start_date: str = None,
|
| 80 |
+
val_filing_end_date: str = None,
|
| 81 |
+
query_string: str = None,
|
| 82 |
+
val_set_balancer=False,
|
| 83 |
+
uniform_split=False,
|
| 84 |
+
force_extract=False,
|
| 85 |
+
**kwargs
|
| 86 |
+
):
|
| 87 |
+
"""
|
| 88 |
+
If train_filing_end_date is None, then a random train-val split will be used. If it is
|
| 89 |
+
specified, then the specified date range will be used for the split. If train_filing_end_date
|
| 90 |
+
if specified and val_filing_start_date is not specifed, then val_filing_start_date defaults to
|
| 91 |
+
train_filing_end_date.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
metadata_url: `string`, url from which to download the metadata file
|
| 95 |
+
data_url: `string`, url from which to download the json files
|
| 96 |
+
data_dir: `string`, folder (in cache) in which downloaded json files are stored
|
| 97 |
+
ipcr_label: International Patent Classification code
|
| 98 |
+
cpc_label: Cooperative Patent Classification code
|
| 99 |
+
train_filing_start_date: Start date for patents in train set (and val set if random split is used)
|
| 100 |
+
train_filing_end_date: End date for patents in train set
|
| 101 |
+
val_filing_start_date: Start date for patents in val set
|
| 102 |
+
val_filing_end_date: End date for patents in val set (and train set if random split is used)
|
| 103 |
+
force_extract: Extract only the relevant years if this parameter is used.
|
| 104 |
+
**kwargs: keyword arguments forwarded to super
|
| 105 |
+
"""
|
| 106 |
+
super().__init__(**kwargs)
|
| 107 |
+
self.metadata_url = metadata_url
|
| 108 |
+
self.data_url = data_url
|
| 109 |
+
self.data_dir = data_dir
|
| 110 |
+
self.ipcr_label = ipcr_label
|
| 111 |
+
self.cpc_label = cpc_label
|
| 112 |
+
self.train_filing_start_date = train_filing_start_date
|
| 113 |
+
self.train_filing_end_date = train_filing_end_date
|
| 114 |
+
self.val_filing_start_date = val_filing_start_date
|
| 115 |
+
self.val_filing_end_date = val_filing_end_date
|
| 116 |
+
self.query_string = query_string
|
| 117 |
+
self.val_set_balancer = val_set_balancer
|
| 118 |
+
self.uniform_split = uniform_split
|
| 119 |
+
self.force_extract = force_extract
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class Patents(datasets.GeneratorBasedBuilder):
|
| 123 |
+
_DESCRIPTION
|
| 124 |
+
|
| 125 |
+
VERSION = datasets.Version("1.0.2")
|
| 126 |
+
|
| 127 |
+
# This is an example of a dataset with multiple configurations.
|
| 128 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
| 129 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 130 |
+
BUILDER_CONFIG_CLASS = PatentsConfig
|
| 131 |
+
BUILDER_CONFIGS = [
|
| 132 |
+
PatentsConfig(
|
| 133 |
+
name="sample",
|
| 134 |
+
description="Patent data from January 2016, for debugging",
|
| 135 |
+
metadata_url="https://huggingface.co/datasets/HUPD/hupd/resolve/main/hupd_metadata_jan16_2022-02-22.feather",
|
| 136 |
+
data_url="https://huggingface.co/datasets/HUPD/hupd/resolve/main/data/sample-jan-2016.tar.gz",
|
| 137 |
+
data_dir="sample", # this will unpack to data/sample/2016
|
| 138 |
+
),
|
| 139 |
+
PatentsConfig(
|
| 140 |
+
name="all",
|
| 141 |
+
description="Patent data from all years (2004-2018)",
|
| 142 |
+
metadata_url="https://huggingface.co/datasets/HUPD/hupd/resolve/main/hupd_metadata_2022-02-22.feather",
|
| 143 |
+
data_url="https://huggingface.co/datasets/HUPD/hupd/resolve/main/data/all-years.tar",
|
| 144 |
+
data_dir="data", # this will unpack to data/{year}
|
| 145 |
+
),
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
def _info(self):
|
| 149 |
+
return datasets.DatasetInfo(
|
| 150 |
+
# This is the description that will appear on the datasets page.
|
| 151 |
+
description=_DESCRIPTION,
|
| 152 |
+
# This defines the different columns of the dataset and their types
|
| 153 |
+
features=datasets.Features(
|
| 154 |
+
{k: datasets.Value("string") for k in _FEATURES}
|
| 155 |
+
),
|
| 156 |
+
# If there's a common (input, target) tuple from the features,
|
| 157 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 158 |
+
# builder.as_dataset.
|
| 159 |
+
supervised_keys=("claims", "decision"),
|
| 160 |
+
homepage="https://github.com/suzgunmirac/hupd",
|
| 161 |
+
citation=_CITATION,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 165 |
+
"""Returns SplitGenerators."""
|
| 166 |
+
print(f'Loading dataset with config: {self.config}')
|
| 167 |
+
|
| 168 |
+
# Download metadata
|
| 169 |
+
# NOTE: Metadata is stored as a Pandas DataFrame in Apache Feather format
|
| 170 |
+
metadata_url = self.config.metadata_url
|
| 171 |
+
metadata_file = dl_manager.download_and_extract(self.config.metadata_url)
|
| 172 |
+
print(f'Using metadata file: {metadata_file}')
|
| 173 |
+
|
| 174 |
+
# Download data
|
| 175 |
+
# NOTE: The extracted path contains a subfolder, data_dir. This directory holds
|
| 176 |
+
# a large number of json files (one json file per patent application).
|
| 177 |
+
download_dir = dl_manager.download_and_extract(self.config.data_url)
|
| 178 |
+
json_dir = os.path.join(download_dir, self.config.data_dir)
|
| 179 |
+
|
| 180 |
+
# Load metadata file
|
| 181 |
+
print(f'Reading metadata file: {metadata_file}')
|
| 182 |
+
if metadata_url.endswith('.feather'):
|
| 183 |
+
df = pd.read_feather(metadata_file)
|
| 184 |
+
elif metadata_url.endswith('.csv'):
|
| 185 |
+
df = pd.read_csv(metadata_file)
|
| 186 |
+
elif metadata_url.endswith('.tsv'):
|
| 187 |
+
df = pd.read_csv(metadata_file, delimiter='\t')
|
| 188 |
+
elif metadata_url.endswith('.pickle'):
|
| 189 |
+
df = pd.read_pickle(metadata_file)
|
| 190 |
+
else:
|
| 191 |
+
raise ValueError(f'Metadata file invalid: {metadata_url}')
|
| 192 |
+
|
| 193 |
+
# Filter based on ICPR / CPC label
|
| 194 |
+
if self.config.ipcr_label:
|
| 195 |
+
print(f'Filtering by IPCR label: {self.config.ipcr_label}')
|
| 196 |
+
df = df[df['main_ipcr_label'].str.startswith(self.config.ipcr_label)]
|
| 197 |
+
elif self.config.cpc_label:
|
| 198 |
+
print(f'Filtering by CPC label: {self.config.cpc_label}')
|
| 199 |
+
df = df[df['main_cpc_label'].str.startswith(self.config.cpc_label)]
|
| 200 |
+
|
| 201 |
+
# Filter metadata based on arbitrary query string
|
| 202 |
+
if self.config.query_string:
|
| 203 |
+
df = df.query(self.config.query_string)
|
| 204 |
+
|
| 205 |
+
if self.config.force_extract:
|
| 206 |
+
if self.config.name == 'all':
|
| 207 |
+
if self.config.train_filing_start_date and self.config.val_filing_end_date:
|
| 208 |
+
if self.config.train_filing_end_date and self.config.val_filing_start_date:
|
| 209 |
+
training_year_range = set(range(int(self.config.train_filing_start_date[:4]), int(self.config.train_filing_end_date[:4]) + 1))
|
| 210 |
+
validation_year_range = set(range(int(self.config.val_filing_start_date[:4]), int(self.config.val_filing_end_date[:4]) + 1))
|
| 211 |
+
full_year_range = training_year_range.union(validation_year_range)
|
| 212 |
+
else:
|
| 213 |
+
full_year_range = set(range(int(self.config.train_filing_start_date[:4]), int(self.config.val_filing_end_date[:4]) + 1))
|
| 214 |
+
else:
|
| 215 |
+
full_year_range = set(range(2004, 2019))
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
import tarfile
|
| 219 |
+
for year in full_year_range:
|
| 220 |
+
tar_file_path = f'{json_dir}/{year}.tar.gz'
|
| 221 |
+
print(f'Extracting {tar_file_path}')
|
| 222 |
+
# open file
|
| 223 |
+
tar_file = tarfile.open(tar_file_path)
|
| 224 |
+
# extracting file
|
| 225 |
+
tar_file.extractall(f'{json_dir}')
|
| 226 |
+
tar_file.close()
|
| 227 |
+
|
| 228 |
+
# Train-validation split (either uniform or by date)
|
| 229 |
+
if self.config.uniform_split:
|
| 230 |
+
|
| 231 |
+
# Assumes that training_start_data < val_end_date
|
| 232 |
+
if self.config.train_filing_start_date:
|
| 233 |
+
df = df[df['filing_date'] >= self.config.train_filing_start_date]
|
| 234 |
+
if self.config.val_filing_end_date:
|
| 235 |
+
df = df[df['filing_date'] <= self.config.val_filing_end_date]
|
| 236 |
+
df = df.sample(frac=1.0, random_state=RANDOM_STATE)
|
| 237 |
+
num_train_samples = int(len(df) * 0.85)
|
| 238 |
+
train_df = df.iloc[0:num_train_samples]
|
| 239 |
+
val_df = df.iloc[num_train_samples:-1]
|
| 240 |
+
|
| 241 |
+
else:
|
| 242 |
+
|
| 243 |
+
# Check
|
| 244 |
+
if not (self.config.train_filing_start_date and self.config.train_filing_end_date and
|
| 245 |
+
self.config.val_filing_start_date and self.config.train_filing_end_date):
|
| 246 |
+
raise ValueError("Please either use uniform_split or specify your exact \
|
| 247 |
+
training and validation split dates.")
|
| 248 |
+
|
| 249 |
+
# Does not assume that training_start_data < val_end_date
|
| 250 |
+
print(f'Filtering train dataset by filing start date: {self.config.train_filing_start_date}')
|
| 251 |
+
print(f'Filtering train dataset by filing end date: {self.config.train_filing_end_date}')
|
| 252 |
+
print(f'Filtering val dataset by filing start date: {self.config.val_filing_start_date}')
|
| 253 |
+
print(f'Filtering val dataset by filing end date: {self.config.val_filing_end_date}')
|
| 254 |
+
train_df = df[
|
| 255 |
+
(df['filing_date'] >= self.config.train_filing_start_date) &
|
| 256 |
+
(df['filing_date'] < self.config.train_filing_end_date)
|
| 257 |
+
]
|
| 258 |
+
val_df = df[
|
| 259 |
+
(df['filing_date'] >= self.config.val_filing_start_date) &
|
| 260 |
+
(df['filing_date'] < self.config.val_filing_end_date)
|
| 261 |
+
]
|
| 262 |
+
|
| 263 |
+
# TODO: We can probably make this step faster
|
| 264 |
+
if self.config.val_set_balancer:
|
| 265 |
+
rejected_df = val_df[val_df.status == 'REJECTED']
|
| 266 |
+
num_rejected = len(rejected_df)
|
| 267 |
+
accepted_df = val_df[val_df.status == 'ACCEPTED']
|
| 268 |
+
num_accepted = len(accepted_df)
|
| 269 |
+
if num_rejected < num_accepted:
|
| 270 |
+
accepted_df = accepted_df.sample(frac=1.0, random_state=RANDOM_STATE) # shuffle(accepted_df)
|
| 271 |
+
accepted_df = accepted_df[:num_rejected]
|
| 272 |
+
else:
|
| 273 |
+
rejected_df = rejected_df.sample(frac=1.0, random_state=RANDOM_STATE) # shuffle(rejected_df)
|
| 274 |
+
rejected_df = rejected_df[:num_accepted]
|
| 275 |
+
val_df = pd.concat([rejected_df, accepted_df])
|
| 276 |
+
|
| 277 |
+
return [
|
| 278 |
+
datasets.SplitGenerator(
|
| 279 |
+
name=datasets.Split.TRAIN,
|
| 280 |
+
gen_kwargs=dict( # these kwargs are passed to _generate_examples
|
| 281 |
+
df=train_df,
|
| 282 |
+
json_dir=json_dir,
|
| 283 |
+
split='train',
|
| 284 |
+
),
|
| 285 |
+
),
|
| 286 |
+
datasets.SplitGenerator(
|
| 287 |
+
name=datasets.Split.VALIDATION,
|
| 288 |
+
gen_kwargs=dict(
|
| 289 |
+
df=val_df,
|
| 290 |
+
json_dir=json_dir,
|
| 291 |
+
split='val',
|
| 292 |
+
),
|
| 293 |
+
),
|
| 294 |
+
]
|
| 295 |
+
|
| 296 |
+
def _generate_examples(self, df, json_dir, split):
|
| 297 |
+
""" Yields examples by loading JSON files containing patent applications. """
|
| 298 |
+
|
| 299 |
+
# NOTE: df.itertuples() is way faster than df.iterrows()
|
| 300 |
+
for id_, x in enumerate(df.itertuples()):
|
| 301 |
+
|
| 302 |
+
# JSON files are named by application number (unique)
|
| 303 |
+
application_year = str(x.filing_date.year)
|
| 304 |
+
application_number = x.application_number
|
| 305 |
+
filepath = os.path.join(json_dir, application_year, application_number + '.json')
|
| 306 |
+
try:
|
| 307 |
+
with open(filepath, 'r') as f:
|
| 308 |
+
patent = json.load(f)
|
| 309 |
+
except Exception as e:
|
| 310 |
+
print('------------')
|
| 311 |
+
print(f'ERROR WITH {filepath}\n')
|
| 312 |
+
print(repr(e))
|
| 313 |
+
print()
|
| 314 |
+
yield id_, {k: "error" for k in _FEATURES}
|
| 315 |
+
|
| 316 |
+
# Most up-to-date-decision in meta dataframe
|
| 317 |
+
decision = x.decision
|
| 318 |
+
yield id_, {
|
| 319 |
+
"patent_number": application_number,
|
| 320 |
+
"decision": patent["decision"], # decision,
|
| 321 |
+
"title": patent["title"],
|
| 322 |
+
"abstract": patent["abstract"],
|
| 323 |
+
"claims": patent["claims"],
|
| 324 |
+
"description": patent["full_description"],
|
| 325 |
+
"background": patent["background"],
|
| 326 |
+
"summary": patent["summary"],
|
| 327 |
+
"cpc_label": patent["main_cpc_label"],
|
| 328 |
+
'filing_date': patent['filing_date'],
|
| 329 |
+
'patent_issue_date': patent['patent_issue_date'],
|
| 330 |
+
'date_published': patent['date_published'],
|
| 331 |
+
'examiner_id': patent['examiner_id'],
|
| 332 |
+
"ipc_label": patent["main_ipcr_label"],
|
| 333 |
+
}
|