from datasets import DatasetInfo, GeneratorBasedBuilder, Split, SplitGenerator, load_dataset, Features, Value class BiasneutralDataset(GeneratorBasedBuilder): """ This dataset filters entries from BookCorpus based on provided indices in the BIASNEUTRAL dataset. """ _CITATION = """ @misc{drechsel2025gradiendmonosemanticfeaturelearning, title={{GRADIEND}: Feature Learning within Neural Networks Exemplified through Biases}, author={Jonathan Drechsel and Steffen Herbold}, year={2025}, eprint={2502.01406}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2502.01406}, } """ def _info(self): return DatasetInfo( description="This dataset consists of BookCorpus entries containing only gender-neutral words (excluding e.g., he, actor, ...).", features=Features({ "index": Value("int32"), "text": Value("string"), }), supervised_keys=None, citation=self._CITATION, ) def _split_generators(self, dl_manager): # URL for your indices file hosted on Hugging Face index_file_url = "https://huggingface.co/datasets/aieng-lab/biasneutral/resolve/main/indices.csv" # Download the indices file indices_file = dl_manager.download_and_extract(index_file_url) # Load BookCorpus dataset print("Loading BookCorpus dataset...") bookcorpus = load_dataset('bookcorpus', trust_remote_code=True)['train'] print("BookCorpus dataset loaded.") return [ SplitGenerator(name=Split.TRAIN, gen_kwargs={"indices_file": indices_file, "bookcorpus": bookcorpus}), ] def _generate_examples(self, indices_file: str, bookcorpus): """ Generate examples by filtering the BookCorpus dataset using provided indices. """ # Load indices from the file with open(indices_file, "r", encoding="utf-8") as f: next(f) # Skip header indices_set = {int(line.strip().split(",")[0]) for line in f} # Filter BookCorpus based on indices and yield examples for idx, sample in enumerate(bookcorpus): if idx in indices_set: yield idx, {"index": idx, "text": sample['text']}