Upload biasneutral.py
Browse files- biasneutral.py +61 -0
biasneutral.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import DatasetInfo, GeneratorBasedBuilder, Split, SplitGenerator, load_dataset, Features, Value
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class BiasneutralDataset(GeneratorBasedBuilder):
|
| 5 |
+
"""
|
| 6 |
+
This dataset filters entries from BookCorpus based on provided indices in the BIASNEUTRAL dataset.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
_CITATION = """
|
| 10 |
+
@misc{drechsel2025gradiendmonosemanticfeaturelearning,
|
| 11 |
+
title={{GRADIEND}: Feature Learning within Neural Networks Exemplified through Biases},
|
| 12 |
+
author={Jonathan Drechsel and Steffen Herbold},
|
| 13 |
+
year={2025},
|
| 14 |
+
eprint={2502.01406},
|
| 15 |
+
archivePrefix={arXiv},
|
| 16 |
+
primaryClass={cs.LG},
|
| 17 |
+
url={https://arxiv.org/abs/2502.01406},
|
| 18 |
+
}
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
def _info(self):
|
| 22 |
+
return DatasetInfo(
|
| 23 |
+
description="This dataset consists of BookCorpus entries containing only gender-neutral words (excluding e.g., he, actor, ...).",
|
| 24 |
+
features=Features({
|
| 25 |
+
"index": Value("int32"),
|
| 26 |
+
"text": Value("string"),
|
| 27 |
+
}),
|
| 28 |
+
supervised_keys=None,
|
| 29 |
+
citation=self._CITATION,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
def _split_generators(self, dl_manager):
|
| 33 |
+
# URL for your indices file hosted on Hugging Face
|
| 34 |
+
index_file_url = "https://huggingface.co/datasets/aieng-lab/biasneutral/resolve/main/indices.csv"
|
| 35 |
+
|
| 36 |
+
# Download the indices file
|
| 37 |
+
indices_file = dl_manager.download_and_extract(index_file_url)
|
| 38 |
+
|
| 39 |
+
# Load BookCorpus dataset
|
| 40 |
+
print("Loading BookCorpus dataset...")
|
| 41 |
+
bookcorpus = load_dataset('bookcorpus', trust_remote_code=True)['train']
|
| 42 |
+
print("BookCorpus dataset loaded.")
|
| 43 |
+
|
| 44 |
+
return [
|
| 45 |
+
SplitGenerator(name=Split.TRAIN, gen_kwargs={"indices_file": indices_file, "bookcorpus": bookcorpus}),
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
def _generate_examples(self, indices_file: str, bookcorpus):
|
| 49 |
+
"""
|
| 50 |
+
Generate examples by filtering the BookCorpus dataset using provided indices.
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
# Load indices from the file
|
| 54 |
+
with open(indices_file, "r", encoding="utf-8") as f:
|
| 55 |
+
next(f) # Skip header
|
| 56 |
+
indices_set = {int(line.strip().split(",")[0]) for line in f}
|
| 57 |
+
|
| 58 |
+
# Filter BookCorpus based on indices and yield examples
|
| 59 |
+
for idx, sample in enumerate(bookcorpus):
|
| 60 |
+
if idx in indices_set:
|
| 61 |
+
yield idx, {"index": idx, "text": sample['text']}
|