Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    ValueError
Message:      Feature type 'Stringsa' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'List', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf']
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
                  ).get_module()
                    ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 605, in get_module
                  dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 386, in from_dataset_card_data
                  dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 317, in _from_yaml_dict
                  yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
                                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2031, in _from_yaml_list
                  return cls.from_dict(from_yaml_inner(yaml_data))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1876, in from_dict
                  obj = generate_from_dict(dic)
                        ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1463, in generate_from_dict
                  return {key: generate_from_dict(value) for key, value in obj.items()}
                               ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1469, in generate_from_dict
                  raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}")
              ValueError: Feature type 'Stringsa' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'List', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf']

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Hazards Dataset

This dataset contains comprehensive information about various hazards, including preparation, reaction, and recovery steps. It is designed for fine-tuning Large Language Models (LLMs) on safety and emergency response procedures.

Dataset Structure

The dataset is provided in a format compatible with the Hugging Face datasets library.

Features

  • hazard_type (string): The high-level category of the hazard (e.g., "Wildfire", "Active Shooter").
  • phase (string): The phase of emergency management ("Prepare", "React", "Recover").
  • audience (string): The target audience ("General", "Kids", "Elderly", "Pets", etc.).
  • topic (string): The specific subject matter of the text chunk (e.g., "Evacuation Routes").
  • content_raw (string): The exact text content extracted from the source PDF.
  • action_items (list of strings): A list of actionable steps extracted from the text.
  • sources (list of dicts): A list of sources/references found in the text, each with a title and url.
  • source_file (string): The filename of the source PDF.
  • page_ref (int): The page number in the source PDF.
  • last_updated (date): The date the source file was last modified.
  • vector (list of floats): A 384-dimensional vector embedding of the content.

Example

{
  "hazard_type": "Avalanche",
  "phase": "Recover",
  "audience": "General",
  "topic": "General Safety",
  "content_raw": "A rapid flow of snow...",
  "action_items": ["Stay calm", "Signal for help"],
  "sources": [{"title": "Avalanche.org", "url": "https://avalanche.org"}],
  "source_file": "avalanche.pdf",
  "page_ref": 1,
  "last_updated": "2025-11-24",
  "vector": [0.023, -0.12, ...]
}

Creation Process

Data Source

The data is sourced from Hazadapt, a safety application providing guides for various hazards.

Collection Method

Data was collected using a custom pipeline that:

  1. Scrapes hazard pages and downloads official PDF guides using Playwright.
  2. Processes PDFs using PyMuPDF4LLM to extract text and layout information.
  3. Parses content into structured fields (Phase, Audience, Topic) using keyword heuristics and layout analysis.
  4. Embeds content using sentence-transformers/all-MiniLM-L6-v2.

Intended Use

  • LLM Fine-tuning: To train models on safety protocols and emergency response.
  • RAG (Retrieval-Augmented Generation): As a knowledge base for safety chatbots.
  • Analysis: For analyzing the structure and content of emergency guides.

Citation

If you use this dataset in your research or application, please cite it as follows:

@dataset{civilian-hazard-lifecycle-instruct,
  author = {Uday Ramesh Phalak},
  title = {Civilian Hazard Safety Dataset},
  year = {2025}, month = nov,
  publisher = {Uday Ramesh Phalak},
  url = {https://huggingface.co/datasets/Uday/civilian-hazard-lifecycle-instruct}
}

Limitations

  • Users should verify critical safety information with official sources.
Downloads last month
28