Datasets:
Merge branch 'main' of https://huggingface.co/datasets/SLPL/naab into main
Browse files- README.md +48 -11
- dataset_info.json +3 -3
- naab.py +21 -10
README.md
CHANGED
|
@@ -6,7 +6,7 @@ license:
|
|
| 6 |
multilinguality:
|
| 7 |
- monolingual
|
| 8 |
size_categories:
|
| 9 |
-
-
|
| 10 |
task_categories:
|
| 11 |
- language-modeling
|
| 12 |
- masked-language-modeling
|
|
@@ -44,7 +44,7 @@ _[If you want to join our community to keep up with news, models and datasets fr
|
|
| 44 |
## Dataset Description
|
| 45 |
|
| 46 |
- **Homepage:** [Sharif Speech and Language Processing Lab](https://huggingface.co/SLPL)
|
| 47 |
-
- **Paper:** [
|
| 48 |
- **Point of Contact:** [Sadra Sabouri](mailto:[email protected])
|
| 49 |
|
| 50 |
### Dataset Summary
|
|
@@ -56,8 +56,6 @@ from datasets import load_dataset
|
|
| 56 |
|
| 57 |
dataset = load_dataset("SLPL/naab")
|
| 58 |
```
|
| 59 |
-
_Note: be sure that your machine has at least 130 GB free space, also it may take a while to download._
|
| 60 |
-
|
| 61 |
You may need to download parts/splits of this corpus too, if so use the command below (You can find more ways to use it [here](https://huggingface.co/docs/datasets/loading#slice-splits)):
|
| 62 |
```python
|
| 63 |
from datasets import load_dataset
|
|
@@ -65,6 +63,42 @@ from datasets import load_dataset
|
|
| 65 |
dataset = load_dataset("SLPL/naab", split="train[:10%]")
|
| 66 |
```
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
### Supported Tasks and Leaderboards
|
| 69 |
|
| 70 |
This corpus can be used for training all language models which can be trained by Masked Language Modeling (MLM) or any other self-supervised objective.
|
|
@@ -165,17 +199,20 @@ mit?
|
|
| 165 |
|
| 166 |
### Citation Information
|
| 167 |
|
| 168 |
-
Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
|
| 169 |
```
|
| 170 |
-
@
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
}
|
| 176 |
```
|
| 177 |
|
| 178 |
-
|
| 179 |
|
| 180 |
### Contributions
|
| 181 |
|
|
|
|
| 6 |
multilinguality:
|
| 7 |
- monolingual
|
| 8 |
size_categories:
|
| 9 |
+
- 100M<n<1B
|
| 10 |
task_categories:
|
| 11 |
- language-modeling
|
| 12 |
- masked-language-modeling
|
|
|
|
| 44 |
## Dataset Description
|
| 45 |
|
| 46 |
- **Homepage:** [Sharif Speech and Language Processing Lab](https://huggingface.co/SLPL)
|
| 47 |
+
- **Paper:** [naab: A ready-to-use plug-and-play corpus for Farsi](https://arxiv.org/abs/2208.13486)
|
| 48 |
- **Point of Contact:** [Sadra Sabouri](mailto:[email protected])
|
| 49 |
|
| 50 |
### Dataset Summary
|
|
|
|
| 56 |
|
| 57 |
dataset = load_dataset("SLPL/naab")
|
| 58 |
```
|
|
|
|
|
|
|
| 59 |
You may need to download parts/splits of this corpus too, if so use the command below (You can find more ways to use it [here](https://huggingface.co/docs/datasets/loading#slice-splits)):
|
| 60 |
```python
|
| 61 |
from datasets import load_dataset
|
|
|
|
| 63 |
dataset = load_dataset("SLPL/naab", split="train[:10%]")
|
| 64 |
```
|
| 65 |
|
| 66 |
+
**Note: be sure that your machine has at least 130 GB free space, also it may take a while to download. If you are facing disk or internet shortage, you can use below code snippet helping you download your costume sections of the naab:**
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
from datasets import load_dataset
|
| 70 |
+
|
| 71 |
+
# ==========================================================
|
| 72 |
+
# You should just change this part in order to download your
|
| 73 |
+
# parts of corpus.
|
| 74 |
+
indices = {
|
| 75 |
+
"train": [5, 1, 2],
|
| 76 |
+
"test": [0, 2]
|
| 77 |
+
}
|
| 78 |
+
# ==========================================================
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
N_FILES = {
|
| 82 |
+
"train": 126,
|
| 83 |
+
"test": 3
|
| 84 |
+
}
|
| 85 |
+
_BASE_URL = "https://huggingface.co/datasets/SLPL/naab/resolve/main/data/"
|
| 86 |
+
data_url = {
|
| 87 |
+
"train": [_BASE_URL + "train-{:05d}-of-{:05d}.txt".format(x, N_FILES["train"]) for x in range(N_FILES["train"])],
|
| 88 |
+
"test": [_BASE_URL + "test-{:05d}-of-{:05d}.txt".format(x, N_FILES["test"]) for x in range(N_FILES["test"])],
|
| 89 |
+
}
|
| 90 |
+
for index in indices['train']:
|
| 91 |
+
assert index < N_FILES['train']
|
| 92 |
+
for index in indices['test']:
|
| 93 |
+
assert index < N_FILES['test']
|
| 94 |
+
data_files = {
|
| 95 |
+
"train": [data_url['train'][i] for i in indices['train']],
|
| 96 |
+
"test": [data_url['test'][i] for i in indices['test']]
|
| 97 |
+
}
|
| 98 |
+
print(data_files)
|
| 99 |
+
dataset = load_dataset('text', data_files=data_files, use_auth_token=True)
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
### Supported Tasks and Leaderboards
|
| 103 |
|
| 104 |
This corpus can be used for training all language models which can be trained by Masked Language Modeling (MLM) or any other self-supervised objective.
|
|
|
|
| 199 |
|
| 200 |
### Citation Information
|
| 201 |
|
|
|
|
| 202 |
```
|
| 203 |
+
@misc{https://doi.org/10.48550/arxiv.2208.13486,
|
| 204 |
+
doi = {10.48550/ARXIV.2208.13486},
|
| 205 |
+
url = {https://arxiv.org/abs/2208.13486},
|
| 206 |
+
author = {Sabouri, Sadra and Rahmati, Elnaz and Gooran, Soroush and Sameti, Hossein},
|
| 207 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 208 |
+
title = {naab: A ready-to-use plug-and-play corpus for Farsi},
|
| 209 |
+
publisher = {arXiv},
|
| 210 |
+
year = {2022},
|
| 211 |
+
copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
|
| 212 |
}
|
| 213 |
```
|
| 214 |
|
| 215 |
+
DOI: [https://doi.org/10.48550/arXiv.2208.13486](https://doi.org/10.48550/arXiv.2208.13486)
|
| 216 |
|
| 217 |
### Contributions
|
| 218 |
|
dataset_info.json
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
{
|
| 2 |
"description": "naab: A ready-to-use plug-and-play corpus in Farsi",
|
| 3 |
-
"citation": "",
|
| 4 |
-
"homepage": "",
|
| 5 |
-
"license": "",
|
| 6 |
"features": {
|
| 7 |
"text": {
|
| 8 |
"dtype": "string",
|
|
|
|
| 1 |
{
|
| 2 |
"description": "naab: A ready-to-use plug-and-play corpus in Farsi",
|
| 3 |
+
"citation": "@misc{https://doi.org/10.48550/arxiv.2208.13486, doi = {10.48550/ARXIV.2208.13486}, url = {https://arxiv.org/abs/2208.13486}, author = {Sabouri, Sadra and Rahmati, Elnaz and Gooran, Soroush and Sameti, Hossein}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {naab: A ready-to-use plug-and-play corpus for Farsi}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}}",
|
| 4 |
+
"homepage": "https://huggingface.co/SLPL",
|
| 5 |
+
"license": "mit",
|
| 6 |
"features": {
|
| 7 |
"text": {
|
| 8 |
"dtype": "string",
|
naab.py
CHANGED
|
@@ -24,6 +24,17 @@ import datasets
|
|
| 24 |
# TODO: Add BibTeX citation
|
| 25 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 26 |
_CITATION = """\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
|
| 29 |
# You can copy an official description
|
|
@@ -33,7 +44,6 @@ Huge corpora of textual data are always known to be a crucial need for training
|
|
| 33 |
|
| 34 |
_HOMEPAGE = "https://huggingface.co/datasets/SLPL/naab"
|
| 35 |
|
| 36 |
-
# TODO: ?
|
| 37 |
_LICENSE = "mit"
|
| 38 |
|
| 39 |
N_FILES = {
|
|
@@ -96,24 +106,25 @@ class Naab(datasets.GeneratorBasedBuilder):
|
|
| 96 |
datasets.SplitGenerator(
|
| 97 |
name=datasets.Split.TRAIN,
|
| 98 |
gen_kwargs={
|
| 99 |
-
"
|
| 100 |
"split": "train"
|
| 101 |
}
|
| 102 |
),
|
| 103 |
datasets.SplitGenerator(
|
| 104 |
name=datasets.Split.TEST,
|
| 105 |
gen_kwargs={
|
| 106 |
-
"
|
| 107 |
"split": "test"
|
| 108 |
}
|
| 109 |
),
|
| 110 |
]
|
| 111 |
|
| 112 |
|
| 113 |
-
def _generate_examples(self,
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
| 24 |
# TODO: Add BibTeX citation
|
| 25 |
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 26 |
_CITATION = """\
|
| 27 |
+
@misc{https://doi.org/10.48550/arxiv.2208.13486,
|
| 28 |
+
doi = {10.48550/ARXIV.2208.13486},
|
| 29 |
+
url = {https://arxiv.org/abs/2208.13486},
|
| 30 |
+
author = {Sabouri, Sadra and Rahmati, Elnaz and Gooran, Soroush and Sameti, Hossein},
|
| 31 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 32 |
+
title = {naab: A ready-to-use plug-and-play corpus for Farsi},
|
| 33 |
+
publisher = {arXiv},
|
| 34 |
+
year = {2022},
|
| 35 |
+
copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
"""
|
| 39 |
|
| 40 |
# You can copy an official description
|
|
|
|
| 44 |
|
| 45 |
_HOMEPAGE = "https://huggingface.co/datasets/SLPL/naab"
|
| 46 |
|
|
|
|
| 47 |
_LICENSE = "mit"
|
| 48 |
|
| 49 |
N_FILES = {
|
|
|
|
| 106 |
datasets.SplitGenerator(
|
| 107 |
name=datasets.Split.TRAIN,
|
| 108 |
gen_kwargs={
|
| 109 |
+
"filepaths": train_downloaded_files,
|
| 110 |
"split": "train"
|
| 111 |
}
|
| 112 |
),
|
| 113 |
datasets.SplitGenerator(
|
| 114 |
name=datasets.Split.TEST,
|
| 115 |
gen_kwargs={
|
| 116 |
+
"filepaths": test_downloaded_files,
|
| 117 |
"split": "test"
|
| 118 |
}
|
| 119 |
),
|
| 120 |
]
|
| 121 |
|
| 122 |
|
| 123 |
+
def _generate_examples(self, filepaths, split):
|
| 124 |
+
for filepath in filepaths:
|
| 125 |
+
with open(filepath, encoding="utf-8") as f:
|
| 126 |
+
for key, row in enumerate(f):
|
| 127 |
+
if row.strip():
|
| 128 |
+
yield key, {"text": row}
|
| 129 |
+
else:
|
| 130 |
+
yield key, {"text": ""}
|