File size: 10,242 Bytes
5622e30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# Quantitative Mapping of Computational Boundaries
[](computational_boundary_paper.pdf)
[](https://doi.org/10.57967/hf/7067)
[](LICENSE)
**A Statistical Field Theory Approach to Phase Transitions in NP-Hard Problems**
**Author:** Zixi Li (Oz Lee)
**Affiliation:** Noesis Lab (Independent Research Group)
**Contact:** [email protected]
---
## Overview
Classical computability theory tells us that computational boundaries **exist** (halting problem, P vs NP), but it doesn't answer: **where exactly are these boundaries?**
This paper presents the first **quantitative mapping** of computational phase transitions through Monte Carlo experiments on 22,000 constraint satisfaction instances. We discover universal laws governing the solvability boundary and extend this framework to natural language via pure NLP semantics.
### Key Question
For a problem of size $L$ with constraint density $d$, what is the probability $\mu(L,d)$ of finding a solution?
**Traditional answer:** "NP-hard ⇒ exponentially hard" (asymptotic)
**Our answer:** $\mu(L,d) = \frac{1}{2}(1 - \text{erf}((d - d_c(L))/\sigma))$ where $d_c(L) = -0.0809\ln(L) + 0.501$ (exact formula)
---
## Main Contributions
### 1. Three Universal Laws
We discover three fundamental laws governing computational boundaries:
**Logarithmic Scaling Law:**
```
d_c(L) = -0.0809 ln(L) + 0.501
```
with MSE ∼ 10⁻³² (machine precision!)
**Universal Phase Transition Kernel:**
```
K(x) = 1/2 (1 - erf(x/σ))
```
with universal constant σ = 0.1007
**Self-Constraint Theory:**
```
C = 1 - λ_min/λ_max
```
Constraint strength emerges from eigenvalue spectrum of word embedding covariance—no heuristic rules needed!
### 2. Complete Prediction Formula
Combining all discoveries:
```
μ(L,d) = 1/2 (1 - erf((d - d_c(L))/0.1007))
where d_c(L) = -0.0809 ln(L) + 0.501
```
This formula predicts solvability probability for any problem instance.
### 3. Natural Language Extension
We extend the framework to arbitrary problems described in natural language:
```
μ(I,C) = 1/2 (1 - erf((C - C_c(I))/σ))
where:
I = information complexity (from text)
C = self-constraint strength (from embeddings)
C_c(I) = -0.0809 I + 0.501
```
---
## Methodology: The Pea Experiment
We propose a **Monte Carlo boundary mapping** approach inspired by area estimation:
1. **Throw peas randomly** across parameter space (L, d)
2. For each point, sample N problem instances
3. Run solver and record success/failure
4. Estimate μ(L,d) = successes/N
5. Map the entire solvability landscape
**Total experiments:** 22,000 samples
**Problem sizes:** L ∈ {8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256}
**Constraint densities:** d ∈ [0.005, 0.4]
---
## Key Results
### Phase Transition Discovery

Sharp transitions observed with:
- Transition width Δd ≈ 0.1
- Low density (d < 0.05): μ = 0.996 ± 0.012
- High density (d > 0.3): μ = 0.278 ± 0.102
- Transition amplitude: Δμ ≈ 0.72
### Universal Kernel Collapse

All phase transition curves collapse onto a single kernel when aligned:
- Standard deviation after alignment: σ = 0.029
- Reconstruction MSE = 0.0057
- Best fit: Error function (cumulative Gaussian)
### Natural Language Predictions
| Problem | I | C_self | C_c | μ | Prediction |
|---------|---|--------|-----|---|------------|
| Sort array of numbers | 1.54 | 0.09 | 0.38 | 1.00 | ✓ Trivial |
| Hamiltonian cycle in graph | 1.82 | 0.24 | 0.35 | 0.94 | ✓ Easy |
| Sudoku with 40 givens | 2.03 | 0.35 | 0.34 | 0.41 | ✓ Hard |
| TSP + 5 required edges | 2.53 | 0.39 | 0.30 | 0.10 | ✓ Intractable |
Predictions match human intuition without running any solver!
---
## Theoretical Impact
### Connections Across Disciplines
This work reveals deep connections between:
- **Computation:** Phase transitions in solvability
- **Information Theory:** Shannon entropy and constraint budgets
- **Statistical Physics:** Landau phase transition theory
- **Geometry:** Spectral properties of embedding spaces
### Paradigm Shift
| Traditional Complexity | Our Approach |
|------------------------|--------------|
| Constructive proofs | Monte Carlo sampling |
| Asymptotic bounds | Exact μ values |
| Discrete classes (P, NP) | Continuous phase diagram |
| O(·) notation | Machine precision MSE |
### Philosophical Implications
Computability is:
- Not **binary** but **probabilistic** (μ ∈ [0,1])
- Not **qualitative** but **quantitative** (exact formulas)
- Not **symbolic** but **geometric** (embedding properties)
---
## Repository Contents
```
.
├── computational_boundary_paper.pdf # Full paper
├── computational_boundary_paper.tex # LaTeX source
├── README.md # This file
├── phase_diagram.png # Phase transition visualization
├── universal_kernel_analysis.png # Universal kernel collapse
├── critical_boundary_mu50.png # Critical boundary curve
├── multi_threshold_boundaries.png # Multiple threshold analysis
├── tsp_phase_diagram.png # TSP cross-validation
└── solvability_predictor_guide.png # Prediction framework
```
---
## Citation
If you use this work in your research, please cite:
```bibtex
@misc{oz_lee_2025,
author = { Oz Lee },
title = { Quantitative_Mapping_of_Computational_Boundaries (Revision 9dcb0f8) },
year = 2025,
url = { https://huggingface.co/datasets/OzTianlu/Quantitative_Mapping_of_Computational_Boundaries },
doi = { 10.57967/hf/7067 },
publisher = { Hugging Face }
}
```
---
## Key Findings Summary
### 1. Logarithmic Scaling (Machine Precision)
Comparison of different scaling models:
| Model | Formula | MSE |
|-------|---------|-----|
| Power law | d = 0.722 L⁻⁰·³⁹¹ | 1.53×10⁻⁴ |
| Exponential | d = 0.287 e⁻⁰·⁰⁰⁸⁷ᴸ | 3.17×10⁻⁴ |
| **Logarithmic** | **d = -0.0809 ln(L) + 0.501** | **2.62×10⁻³²** |
| Linear | d = -0.00151 L + 0.275 | 6.45×10⁻⁴ |
The logarithmic model achieves **machine precision**—unprecedented in complexity theory!
### 2. Self-Constraint Theory
Traditional keyword-based methods vs. our approach:
| Feature | Keyword Method | Self-Constraint |
|---------|----------------|-----------------|
| Keyword list | Required | ✓ Not needed |
| Domain dependence | Strong | ✓ None |
| Math foundation | Empirical | ✓ Spectral analysis |
| Physical meaning | Weak | ✓ Strong (eigenvalues) |
| Interpretability | Low | ✓ High (geometric) |
**Core insight:** Constraints are not linguistic features—they are **geometric properties** of semantic embedding spaces.
### 3. Information-Constraint Phase Diagram
Universal scaling law:
```
∂C_c/∂I = -0.0809
```
**Interpretation:** Each additional bit of information reduces constraint tolerance by 8.09%.
---
## Applications
### 1. Algorithm Selection
Predict problem difficulty before running any solver—choose appropriate algorithm based on μ prediction.
### 2. Constraint Generation
Design problem instances with target difficulty by controlling (L, d) parameters.
### 3. Complexity Estimation
Estimate computational cost from natural language problem descriptions.
### 4. Educational Tools
Visualize computational phase transitions for teaching complexity theory.
---
## Future Directions
### Theory
- Derive α, β, σ from first principles
- Prove asymptotic properties of logarithmic law
- Classify other NP problems into universality classes
- Explore quantum computation phase transitions
### Experiments
- More problem types (SAT, graph coloring, knapsack)
- Different solvers (SMT, DPLL, genetic algorithms)
- Industrial real-world instances
- Large-scale parallelization
### Applications
- Automated algorithm selection systems
- Intelligent constraint generation
- Complexity estimation APIs
- Interactive educational software
---
## Limitations
1. **Model dependence:** NLP predictions rely on sentence-transformers/all-MiniLM-L6-v2
2. **Solver baseline:** Only tested backtracking (other algorithms may differ)
3. **Problem scope:** Mainly constraint satisfaction (need more problem types)
4. **Small-size effects:** Discrete artifacts for L < 16
5. **Language:** Only validated on English text
---
## Technical Details
### Benchmark Problem: OpenXOR
A minimal NP-hard problem with:
- **Search space:** 2ⁿ (exponential)
- **Solution density:** ≈ 2⁻ᵏ for k checkpoints
- **Minimal DSL:** Only 2 operations (XOR, NOP)
- **No confounds:** Pure constraint satisfaction
### Self-Constraint Computation
For problem text T with words {w₁, ..., wₙ}:
1. Get embeddings: V = [v₁, ..., vₙ] ∈ ℝⁿˣᵈ
2. Compute covariance: Σ = Cov(V)
3. Eigenvalue decomposition: Σ = Σᵢ λᵢ uᵢuᵢᵀ
4. Extract constraint: C = 1 - λ_min/λ_max
**Physical intuition:**
- λ_min ≈ λ_max (isotropic) ⇒ unconstrained (C ≈ 0)
- λ_min ≪ λ_max (compressed) ⇒ constrained (C ≈ 1)
### Information Complexity
```
I = ln(n+1) × (1 + ln(1 + σ²_sem)) × r_unique
```
where:
- ln(n+1) = word count (problem size)
- σ²_sem = semantic diversity
- r_unique = unique word ratio (information density)
---
## Acknowledgments
We thank the "pea experiment" inspiration from Monte Carlo area estimation. This work demonstrates the power of statistical methods in theoretical computer science.
---
## License
MIT License - See LICENSE file for details
---
## Contact
For questions, collaborations, or discussions:
**Zixi Li (Oz Lee)**
Email: [email protected]
Affiliation: Noesis Lab (Independent Research Group)
---
## Related Work
- **The Incompleteness of Reasoning:** [HuggingFace Dataset](https://huggingface.co/datasets/OzTianlu/The_Incompleteness_of_Reasoning)
- Previous work on computational boundaries and reasoning limits
---
**Last Updated:** January 2025
**Version:** Revision 9dcb0f8
|