File size: 16,160 Bytes
d822ada 49ec8af d822ada 49c2d9d d822ada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
---
task_categories:
- text-classification
- token-classification
language:
- en
pretty_name: DiMB-RE
size_categories:
- 1K<n<10K
dataset_info:
- config_name: default
features:
- name: doc_key
dtype: string
- name: tokens
sequence: string
- name: sentences
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: ner
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: type
dtype: string
- name: ner_tags
sequence: string
- name: triggers
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: type
dtype: string
- name: relations
list:
- name: head
dtype: int32
- name: head_start
dtype: int32
- name: head_end
dtype: int32
- name: head_type
dtype: string
- name: tail
dtype: int32
- name: tail_start
dtype: int32
- name: tail_end
dtype: int32
- name: tail_type
dtype: string
- name: type
dtype: string
- name: factuality
dtype: string
- name: triplets
list:
- name: head_start
dtype: int32
- name: head_end
dtype: int32
- name: tail_start
dtype: int32
- name: tail_end
dtype: int32
- name: trigger_start
dtype: int32
- name: trigger_end
dtype: int32
- name: relation
dtype: string
splits:
- name: train
num_bytes: 2509651
num_examples: 139
- name: validation
num_bytes: 150711
num_examples: 19
- name: test
num_bytes: 310513
num_examples: 37
download_size: 2048088
dataset_size: 2970875
- config_name: ner
features:
- name: doc_key
dtype: string
- name: tokens
sequence: string
- name: sentences
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: ner
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: type
dtype: string
- name: ner_tags
sequence: string
- name: triggers
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: type
dtype: string
- name: relations
list:
- name: head
dtype: int32
- name: head_start
dtype: int32
- name: head_end
dtype: int32
- name: head_type
dtype: string
- name: tail
dtype: int32
- name: tail_start
dtype: int32
- name: tail_end
dtype: int32
- name: tail_type
dtype: string
- name: type
dtype: string
- name: factuality
dtype: string
- name: triplets
list:
- name: head_start
dtype: int32
- name: head_end
dtype: int32
- name: tail_start
dtype: int32
- name: tail_end
dtype: int32
- name: trigger_start
dtype: int32
- name: trigger_end
dtype: int32
- name: relation
dtype: string
splits:
- name: train
num_bytes: 2509651
num_examples: 139
- name: validation
num_bytes: 150711
num_examples: 19
- name: test
num_bytes: 310513
num_examples: 37
download_size: 2048088
dataset_size: 2970875
- config_name: re
features:
- name: doc_key
dtype: string
- name: tokens
sequence: string
- name: sentences
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: ner
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: type
dtype: string
- name: ner_tags
sequence: string
- name: triggers
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: type
dtype: string
- name: relations
list:
- name: head
dtype: int32
- name: head_start
dtype: int32
- name: head_end
dtype: int32
- name: head_type
dtype: string
- name: tail
dtype: int32
- name: tail_start
dtype: int32
- name: tail_end
dtype: int32
- name: tail_type
dtype: string
- name: type
dtype: string
- name: factuality
dtype: string
- name: triplets
list:
- name: head_start
dtype: int32
- name: head_end
dtype: int32
- name: tail_start
dtype: int32
- name: tail_end
dtype: int32
- name: trigger_start
dtype: int32
- name: trigger_end
dtype: int32
- name: relation
dtype: string
splits:
- name: train
num_bytes: 2509651
num_examples: 139
- name: validation
num_bytes: 150711
num_examples: 19
- name: test
num_bytes: 310513
num_examples: 37
download_size: 2048088
dataset_size: 2970875
- config_name: sentence_level
features:
- name: id
dtype: string
- name: doc_key
dtype: string
- name: tokens
sequence: string
- name: ner
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: type
dtype: string
- name: ner_tags
sequence: string
- name: triggers
list:
- name: start
dtype: int32
- name: end
dtype: int32
- name: type
dtype: string
- name: relations
list:
- name: head
dtype: int32
- name: head_start
dtype: int32
- name: head_end
dtype: int32
- name: head_type
dtype: string
- name: tail
dtype: int32
- name: tail_start
dtype: int32
- name: tail_end
dtype: int32
- name: tail_type
dtype: string
- name: type
dtype: string
- name: factuality
dtype: string
- name: triplets
list:
- name: head_start
dtype: int32
- name: head_end
dtype: int32
- name: tail_start
dtype: int32
- name: tail_end
dtype: int32
- name: trigger_start
dtype: int32
- name: trigger_end
dtype: int32
- name: relation
dtype: string
splits:
- name: train
num_bytes: 2676253
num_examples: 3722
- name: validation
num_bytes: 158072
num_examples: 233
- name: test
num_bytes: 327564
num_examples: 494
download_size: 2048088
dataset_size: 3161889
tags:
- medical
- biology
---
# Dataset Card for "DiMB-RE"
<!-- Provide a quick summary of the dataset. -->
DiMB-RE (Diet-Microbiome Relation Extraction) corpus is a resource for mining diet-microbiome associations from scientific literature.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** Gibong Hong, Veronica Hindle, Nadine M. Veasley, Hannah D. Holscher, Halil Kilicoglu
- **Funded by:** University of Illinois Personalized Nutrition Initiative Seed Grant, National Center for Complementary and Integrative Health (NCCIH), Office of Data Science Strategy (ODSS)
- **Shared by:** ScienceNLP Lab, University of Illinois Urbana-Champaign
- **Language(s) (NLP):** English
- **License:** [More Information Needed]
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/ScienceNLP-Lab/DiMB-RE
- **Paper:** [DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations](https://arxiv.org/pdf/2409.19581.pdf)
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
The dataset is provided in a JSON format and has two configurations: a sentence-level view and a document-level view. Each data point in the sentence-level configuration contains the following fields:
- `id`: A unique string identifier for the sentence (e.g., PMC4994979_sent_0).
- `doc_key`: A string identifying the source document (e.g., PMC4994979).
- `tokens`: A list of strings representing the words in the sentence.
- `ner`: A list of dictionaries for each named entity, containing its start and end token indices and its entity type.
- `ner_tags`: A sequence of strings representing the BIO (Beginning, Inside, Outside) tag for each token.
- `triggers`: A list of dictionaries for each relation trigger, containing its start and end token indices and its type (which corresponds to a relation type).
- `relations`: A list of dictionaries, where each dictionary defines a relationship between two entities (a head and a tail), including their token spans, types, the relation type, and the factuality level.
- `triplets`: A list of dictionaries linking a head entity, a tail entity, and a trigger by their token spans.
Example Data Point (sentence_level)
```json
{
"doc_key": "PMC4994979",
"id": "PMC4994979_sent_0",
"ner": [
{"end": 7, "start": 2, "type": "Nutrient"},
{"end": 11, "start": 9, "type": "Physiology"}
],
"ner_tags": ["O", "O", "B-Nutrient", "I-Nutrient", "I-Nutrient", "I-Nutrient", "I-Nutrient", "O", "O", "B-Physiology", "I-Physiology", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
"relations": [
{
"factuality": "Unknown",
"head": 0,
"head_end": 7,
"head_start": 2,
"head_type": "Nutrient",
"tail": 1,
"tail_end": 11,
"tail_start": 9,
"tail_type": "Physiology",
"type": "AFFECTS"
}
],
"tokens": ["Effect", "of", "vitamin", "E", "with", "therapeutic", "iron", "supplementation", "on", "iron", "repletion", "and", "gut", "microbiome", "in", "U", ".", "S", ".", "iron", "deficient", "infants", "and", "toddlers", ":", "a", "randomized", "control", "trial"],
"triggers": [
{"end": 392, "start": 391, "type": "Nutrient"}
],
"triplets": [
{
"head_end": 7,
"head_start": 2,
"relation": "0",
"tail_end": 11,
"tail_start": 9,
"trigger_end": 1,
"trigger_start": 0
}
]
}
```
The document-level view additional contains the following field:
- `sentences`: A list of dictionaries for each sentence, containing its start and end token indices.
### Entity Types
The dataset is annotated with 15 entity types:
- Food, Nutrient, DietPattern, Microorganism, DiversityMetric, Metabolite, Physiology, Disease, Measurement, Enzyme, Gene, Chemical, Methodology, Population, Biospecimen
### Relation Types
Relations capture the interactions between entities and are categorized into 13 types:
- AFFECTS, IMPROVES, WORSENS, ASSOCIATED_WITH, POS_ASSOCIATED_WITH, NEG_ASSOCIATED_WITH, INTERACTS_WITH, INCREASES, DECREASES, CAUSES, PREVENTS, PREDISPOSES, HAS_COMPONENT
Annotations also include relation triggers (the specific word or phrase indicating the relation, e.g., "increased") and factuality levels (Factual, Probable, Possible, Doubtful, Negated, and
Unknown).
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
The motivation for creating DiMB-RE was the recognition that while the scientific literature contains vast amounts of evidence on diet-microbiome interactions, this knowledge is locked in unstructured text. Manually curated databases are often limited and not scalable. This dataset was created to enable the use of NLP to automatically machine-read the literature, structure this information, and ultimately facilitate knowledge-guided analysis to advance personalized nutrition.
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
The source data consists of titles and abstracts from 165 publications and the full-text Results sections from 30 of those publications. The articles were retrieved from PubMed using a manually crafted search string developed by domain experts in food science and human nutrition. The search terms focused on key concepts in diet-microbiome research.
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
The source data was produced by the authors of the scientific articles included in the corpus. These are researchers from various institutions globally who have published on the topic of diet and the microbiome.
### Annotations
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
The annotation was performed by two graduate students in food science and nutrition and a senior investigator with expertise in NLP and biomedical informatics, using the Brat annotation tool.
The process involved multiple stages of annotation, calculation of inter-annotator agreement (IAA), and adjudication of disagreements to refine the annotation guidelines.
The final annotations were verified for consistency and accuracy. IAA for entities was reasonable (mean F1-score of 0.69 exact, 0.80 partial), while relation agreement was more modest (mean F1-score of 0.41 exact, 0.54 partial), highlighting the task's difficulty.
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
The annotators were Veronica Hindle and Nadine M. Veasley, and Halil Kilicoglu. Gibong Hong also participated in verifying the final annotations.
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
[More Information Needed].
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```tex
@misc{hong2024dimbreminingscientificliterature,
title={DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations},
author={Gibong Hong and Veronica Hindle and Nadine M. Veasley and Hannah D. Holscher and Halil Kilicoglu},
year={2024},
eprint={2409.19581},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.19581},
}
```
**APA:**
Hong, G., Hindle, V., Veasley, N. M., Holscher, H. D., & Kilicoglu, H. (2024). DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations. ArXiv. /abs/2409.19581
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Contributions
Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset. |