File size: 16,160 Bytes
d822ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ec8af
 
 
d822ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49c2d9d
 
d822ada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
---
task_categories:
- text-classification
- token-classification
language:
- en
pretty_name: DiMB-RE
size_categories:
- 1K<n<10K
dataset_info:
- config_name: default
  features:
  - name: doc_key
    dtype: string
  - name: tokens
    sequence: string
  - name: sentences
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
  - name: ner
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
    - name: type
      dtype: string
  - name: ner_tags
    sequence: string
  - name: triggers
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
    - name: type
      dtype: string
  - name: relations
    list:
    - name: head
      dtype: int32
    - name: head_start
      dtype: int32
    - name: head_end
      dtype: int32
    - name: head_type
      dtype: string
    - name: tail
      dtype: int32
    - name: tail_start
      dtype: int32
    - name: tail_end
      dtype: int32
    - name: tail_type
      dtype: string
    - name: type
      dtype: string
    - name: factuality
      dtype: string
  - name: triplets
    list:
    - name: head_start
      dtype: int32
    - name: head_end
      dtype: int32
    - name: tail_start
      dtype: int32
    - name: tail_end
      dtype: int32
    - name: trigger_start
      dtype: int32
    - name: trigger_end
      dtype: int32
    - name: relation
      dtype: string
  splits:
  - name: train
    num_bytes: 2509651
    num_examples: 139
  - name: validation
    num_bytes: 150711
    num_examples: 19
  - name: test
    num_bytes: 310513
    num_examples: 37
  download_size: 2048088
  dataset_size: 2970875
- config_name: ner
  features:
  - name: doc_key
    dtype: string
  - name: tokens
    sequence: string
  - name: sentences
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
  - name: ner
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
    - name: type
      dtype: string
  - name: ner_tags
    sequence: string
  - name: triggers
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
    - name: type
      dtype: string
  - name: relations
    list:
    - name: head
      dtype: int32
    - name: head_start
      dtype: int32
    - name: head_end
      dtype: int32
    - name: head_type
      dtype: string
    - name: tail
      dtype: int32
    - name: tail_start
      dtype: int32
    - name: tail_end
      dtype: int32
    - name: tail_type
      dtype: string
    - name: type
      dtype: string
    - name: factuality
      dtype: string
  - name: triplets
    list:
    - name: head_start
      dtype: int32
    - name: head_end
      dtype: int32
    - name: tail_start
      dtype: int32
    - name: tail_end
      dtype: int32
    - name: trigger_start
      dtype: int32
    - name: trigger_end
      dtype: int32
    - name: relation
      dtype: string
  splits:
  - name: train
    num_bytes: 2509651
    num_examples: 139
  - name: validation
    num_bytes: 150711
    num_examples: 19
  - name: test
    num_bytes: 310513
    num_examples: 37
  download_size: 2048088
  dataset_size: 2970875
- config_name: re
  features:
  - name: doc_key
    dtype: string
  - name: tokens
    sequence: string
  - name: sentences
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
  - name: ner
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
    - name: type
      dtype: string
  - name: ner_tags
    sequence: string
  - name: triggers
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
    - name: type
      dtype: string
  - name: relations
    list:
    - name: head
      dtype: int32
    - name: head_start
      dtype: int32
    - name: head_end
      dtype: int32
    - name: head_type
      dtype: string
    - name: tail
      dtype: int32
    - name: tail_start
      dtype: int32
    - name: tail_end
      dtype: int32
    - name: tail_type
      dtype: string
    - name: type
      dtype: string
    - name: factuality
      dtype: string
  - name: triplets
    list:
    - name: head_start
      dtype: int32
    - name: head_end
      dtype: int32
    - name: tail_start
      dtype: int32
    - name: tail_end
      dtype: int32
    - name: trigger_start
      dtype: int32
    - name: trigger_end
      dtype: int32
    - name: relation
      dtype: string
  splits:
  - name: train
    num_bytes: 2509651
    num_examples: 139
  - name: validation
    num_bytes: 150711
    num_examples: 19
  - name: test
    num_bytes: 310513
    num_examples: 37
  download_size: 2048088
  dataset_size: 2970875
- config_name: sentence_level
  features:
  - name: id
    dtype: string
  - name: doc_key
    dtype: string
  - name: tokens
    sequence: string
  - name: ner
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
    - name: type
      dtype: string
  - name: ner_tags
    sequence: string
  - name: triggers
    list:
    - name: start
      dtype: int32
    - name: end
      dtype: int32
    - name: type
      dtype: string
  - name: relations
    list:
    - name: head
      dtype: int32
    - name: head_start
      dtype: int32
    - name: head_end
      dtype: int32
    - name: head_type
      dtype: string
    - name: tail
      dtype: int32
    - name: tail_start
      dtype: int32
    - name: tail_end
      dtype: int32
    - name: tail_type
      dtype: string
    - name: type
      dtype: string
    - name: factuality
      dtype: string
  - name: triplets
    list:
    - name: head_start
      dtype: int32
    - name: head_end
      dtype: int32
    - name: tail_start
      dtype: int32
    - name: tail_end
      dtype: int32
    - name: trigger_start
      dtype: int32
    - name: trigger_end
      dtype: int32
    - name: relation
      dtype: string
  splits:
  - name: train
    num_bytes: 2676253
    num_examples: 3722
  - name: validation
    num_bytes: 158072
    num_examples: 233
  - name: test
    num_bytes: 327564
    num_examples: 494
  download_size: 2048088
  dataset_size: 3161889
tags:
- medical
- biology
---

# Dataset Card for "DiMB-RE"

<!-- Provide a quick summary of the dataset. -->

DiMB-RE (Diet-Microbiome Relation Extraction) corpus is a resource for mining diet-microbiome associations from scientific literature.

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->



- **Curated by:** Gibong Hong, Veronica Hindle, Nadine M. Veasley, Hannah D. Holscher, Halil Kilicoglu
- **Funded by:** University of Illinois Personalized Nutrition Initiative Seed Grant, National Center for Complementary and Integrative Health (NCCIH), Office of Data Science Strategy (ODSS)
- **Shared by:** ScienceNLP Lab, University of Illinois Urbana-Champaign
- **Language(s) (NLP):** English
- **License:** [More Information Needed]

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/ScienceNLP-Lab/DiMB-RE
- **Paper:** [DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations](https://arxiv.org/pdf/2409.19581.pdf)

## Uses

<!-- Address questions around how the dataset is intended to be used. -->

### Direct Use

<!-- This section describes suitable use cases for the dataset. -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->

[More Information Needed]

## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

The dataset is provided in a JSON format and has two configurations: a sentence-level view and a document-level view. Each data point in the sentence-level configuration contains the following fields:

- `id`: A unique string identifier for the sentence (e.g., PMC4994979_sent_0).
- `doc_key`: A string identifying the source document (e.g., PMC4994979).
- `tokens`: A list of strings representing the words in the sentence.
- `ner`: A list of dictionaries for each named entity, containing its start and end token indices and its entity type.
- `ner_tags`: A sequence of strings representing the BIO (Beginning, Inside, Outside) tag for each token.
- `triggers`: A list of dictionaries for each relation trigger, containing its start and end token indices and its type (which corresponds to a relation type).
- `relations`: A list of dictionaries, where each dictionary defines a relationship between two entities (a head and a tail), including their token spans, types, the relation type, and the factuality level.
- `triplets`: A list of dictionaries linking a head entity, a tail entity, and a trigger by their token spans.

Example Data Point (sentence_level)
```json
{
    "doc_key": "PMC4994979",
    "id": "PMC4994979_sent_0",
    "ner": [
        {"end": 7, "start": 2, "type": "Nutrient"},
        {"end": 11, "start": 9, "type": "Physiology"}
    ],
    "ner_tags": ["O", "O", "B-Nutrient", "I-Nutrient", "I-Nutrient", "I-Nutrient", "I-Nutrient", "O", "O", "B-Physiology", "I-Physiology", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O"],
    "relations": [
        {
            "factuality": "Unknown",
            "head": 0,
            "head_end": 7,
            "head_start": 2,
            "head_type": "Nutrient",
            "tail": 1,
            "tail_end": 11,
            "tail_start": 9,
            "tail_type": "Physiology",
            "type": "AFFECTS"
        }
    ],
    "tokens": ["Effect", "of", "vitamin", "E", "with", "therapeutic", "iron", "supplementation", "on", "iron", "repletion", "and", "gut", "microbiome", "in", "U", ".", "S", ".", "iron", "deficient", "infants", "and", "toddlers", ":", "a", "randomized", "control", "trial"],
    "triggers": [
        {"end": 392, "start": 391, "type": "Nutrient"}
    ],
    "triplets": [
        {
            "head_end": 7,
            "head_start": 2,
            "relation": "0",
            "tail_end": 11,
            "tail_start": 9,
            "trigger_end": 1,
            "trigger_start": 0
        }
    ]
}
```

The document-level view additional contains the following field:

- `sentences`: A list of dictionaries for each sentence, containing its start and end token indices.

### Entity Types
The dataset is annotated with 15 entity types:
- Food, Nutrient, DietPattern, Microorganism, DiversityMetric, Metabolite, Physiology, Disease, Measurement, Enzyme, Gene, Chemical, Methodology, Population, Biospecimen

### Relation Types
Relations capture the interactions between entities and are categorized into 13 types:
- AFFECTS, IMPROVES, WORSENS, ASSOCIATED_WITH, POS_ASSOCIATED_WITH, NEG_ASSOCIATED_WITH, INTERACTS_WITH, INCREASES, DECREASES, CAUSES, PREVENTS, PREDISPOSES, HAS_COMPONENT

Annotations also include relation triggers (the specific word or phrase indicating the relation, e.g., "increased") and factuality levels (Factual, Probable, Possible, Doubtful, Negated, and
Unknown).



## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

The motivation for creating DiMB-RE was the recognition that while the scientific literature contains vast amounts of evidence on diet-microbiome interactions, this knowledge is locked in unstructured text. Manually curated databases are often limited and not scalable. This dataset was created to enable the use of NLP to automatically machine-read the literature, structure this information, and ultimately facilitate knowledge-guided analysis to advance personalized nutrition.

### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

The source data consists of titles and abstracts from 165 publications and the full-text Results sections from 30 of those publications. The articles were retrieved from PubMed using a manually crafted search string developed by domain experts in food science and human nutrition. The search terms focused on key concepts in diet-microbiome research.

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

The source data was produced by the authors of the scientific articles included in the corpus. These are researchers from various institutions globally who have published on the topic of diet and the microbiome.

### Annotations

<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->

#### Annotation process

<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->

The annotation was performed by two graduate students in food science and nutrition and a senior investigator with expertise in NLP and biomedical informatics, using the Brat annotation tool. 
The process involved multiple stages of annotation, calculation of inter-annotator agreement (IAA), and adjudication of disagreements to refine the annotation guidelines. 
The final annotations were verified for consistency and accuracy. IAA for entities was reasonable (mean F1-score of 0.69 exact, 0.80 partial), while relation agreement was more modest (mean F1-score of 0.41 exact, 0.54 partial), highlighting the task's difficulty.

#### Who are the annotators?

<!-- This section describes the people or systems who created the annotations. -->

The annotators were Veronica Hindle and Nadine M. Veasley, and Halil Kilicoglu. Gibong Hong also participated in verifying the final annotations.

#### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

[More Information Needed].

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```tex
@misc{hong2024dimbreminingscientificliterature,
      title={DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations}, 
      author={Gibong Hong and Veronica Hindle and Nadine M. Veasley and Hannah D. Holscher and Halil Kilicoglu},
      year={2024},
      eprint={2409.19581},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2409.19581}, 
}
```

**APA:**

Hong, G., Hindle, V., Veasley, N. M., Holscher, H. D., & Kilicoglu, H. (2024). DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations. ArXiv. /abs/2409.19581

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Dataset Card Contributions

Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.