Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K<n<10K
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """The Text REtrieval Conference (TREC) Question Classification dataset.""" | |
| import datasets | |
| _DESCRIPTION = """\ | |
| The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set. | |
| The dataset has 6 coarse class labels and 50 fine class labels. Average length of each sentence is 10, vocabulary size of 8700. | |
| Data are collected from four sources: 4,500 English questions published by USC (Hovy et al., 2001), about 500 manually constructed questions for a few rare classes, 894 TREC 8 and TREC 9 questions, and also 500 questions from TREC 10 which serves as the test set. These questions were manually labeled. | |
| """ | |
| _HOMEPAGE = "https://cogcomp.seas.upenn.edu/Data/QA/QC/" | |
| _CITATION = """\ | |
| @inproceedings{li-roth-2002-learning, | |
| title = "Learning Question Classifiers", | |
| author = "Li, Xin and | |
| Roth, Dan", | |
| booktitle = "{COLING} 2002: The 19th International Conference on Computational Linguistics", | |
| year = "2002", | |
| url = "https://www.aclweb.org/anthology/C02-1150", | |
| } | |
| @inproceedings{hovy-etal-2001-toward, | |
| title = "Toward Semantics-Based Answer Pinpointing", | |
| author = "Hovy, Eduard and | |
| Gerber, Laurie and | |
| Hermjakob, Ulf and | |
| Lin, Chin-Yew and | |
| Ravichandran, Deepak", | |
| booktitle = "Proceedings of the First International Conference on Human Language Technology Research", | |
| year = "2001", | |
| url = "https://www.aclweb.org/anthology/H01-1069", | |
| } | |
| """ | |
| _URLs = { | |
| "train": "https://cogcomp.seas.upenn.edu/Data/QA/QC/train_5500.label", | |
| "test": "https://cogcomp.seas.upenn.edu/Data/QA/QC/TREC_10.label", | |
| } | |
| _COARSE_LABELS = ["ABBR", "ENTY", "DESC", "HUM", "LOC", "NUM"] | |
| _FINE_LABELS = [ | |
| "ABBR:abb", | |
| "ABBR:exp", | |
| "ENTY:animal", | |
| "ENTY:body", | |
| "ENTY:color", | |
| "ENTY:cremat", | |
| "ENTY:currency", | |
| "ENTY:dismed", | |
| "ENTY:event", | |
| "ENTY:food", | |
| "ENTY:instru", | |
| "ENTY:lang", | |
| "ENTY:letter", | |
| "ENTY:other", | |
| "ENTY:plant", | |
| "ENTY:product", | |
| "ENTY:religion", | |
| "ENTY:sport", | |
| "ENTY:substance", | |
| "ENTY:symbol", | |
| "ENTY:techmeth", | |
| "ENTY:termeq", | |
| "ENTY:veh", | |
| "ENTY:word", | |
| "DESC:def", | |
| "DESC:desc", | |
| "DESC:manner", | |
| "DESC:reason", | |
| "HUM:gr", | |
| "HUM:ind", | |
| "HUM:title", | |
| "HUM:desc", | |
| "LOC:city", | |
| "LOC:country", | |
| "LOC:mount", | |
| "LOC:other", | |
| "LOC:state", | |
| "NUM:code", | |
| "NUM:count", | |
| "NUM:date", | |
| "NUM:dist", | |
| "NUM:money", | |
| "NUM:ord", | |
| "NUM:other", | |
| "NUM:period", | |
| "NUM:perc", | |
| "NUM:speed", | |
| "NUM:temp", | |
| "NUM:volsize", | |
| "NUM:weight", | |
| ] | |
| class Trec(datasets.GeneratorBasedBuilder): | |
| """The Text REtrieval Conference (TREC) Question Classification dataset.""" | |
| VERSION = datasets.Version("2.0.0", description="Fine label contains 50 classes instead of 47.") | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "text": datasets.Value("string"), | |
| "coarse_label": datasets.ClassLabel(names=_COARSE_LABELS), | |
| "fine_label": datasets.ClassLabel(names=_FINE_LABELS), | |
| } | |
| ), | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| dl_files = dl_manager.download(_URLs) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": dl_files["train"], | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": dl_files["test"], | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples.""" | |
| with open(filepath, "rb") as f: | |
| for id_, row in enumerate(f): | |
| # One non-ASCII byte: sisterBADBYTEcity. We replace it with a space | |
| fine_label, _, text = row.replace(b"\xf0", b" ").strip().decode().partition(" ") | |
| coarse_label = fine_label.split(":")[0] | |
| yield id_, { | |
| "text": text, | |
| "coarse_label": coarse_label, | |
| "fine_label": fine_label, | |
| } | |