--- license: apache-2.0 task_categories: - image-segmentation tags: - aigc-detection - diffusion-editing - image-forgery-detection - diffusion-models --- # 🖼️ DiffSeg30k -- A multi-turn diffusion-editing dataset for localized AIGC detection A dataset for **segmenting diffusion-based edits** — ideal for training and evaluating models that localize edited regions and identify the underlying diffusion model, as presented in the paper [DiffSeg30k: A Multi-Turn Diffusion Editing Benchmark for Localized AIGC Detection](https://huggingface.co/papers/2511.19111). ## 📁 Dataset Usage - `xxxxxxxx.image.png`: Edited images. Each image may have undergone 1, 2, or 3 editing operations. - `xxxxxxxx.mask.png`: The corresponding mask indicating edited regions, where pixel values encode both the type of edit and the diffusion model used. Load images and masks as follows: ```python from datasets import load_dataset dataset = load_dataset("Chaos2629/Diffseg30k", split="train") image, mask = dataset[0]['image'], dataset[0]['mask'] ``` ## 🧠 Mask Annotation Each mask is a grayscale image (PNG format), where pixel values correspond to a specific editing model. The mapping is as follows: | Mask Value | Editing Model | |------------|------------------------------------------------------| | 0 | background | | 1 | stabilityai/stable-diffusion-2-inpainting | | 2 | kolors | | 3 | stabilityai/stable-diffusion-3.5-medium | | 4 | flux | | 5 | diffusers/stable-diffusion-xl-1.0-inpainting-0.1 | | 6 | glide | | 7 | Tencent-Hunyuan/HunyuanDiT-Diffusers | | 8 | kandinsky-community/kandinsky-2-2-decoder-inpaint | ## 📌 Notes - Each edited image may be edited **multiple turns**, so the corresponding mask may contain several different **label values** ranging from 0 to 8.