Chaos2629 nielsr HF Staff commited on
Commit
1ee9d72
Β·
verified Β·
1 Parent(s): f709b06

Add paper link, task category, and descriptive tags (#1)

Browse files

- Add paper link, task category, and descriptive tags (f8c85131c89806d3de7bbc176cc4ab1dcd18a1cf)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +10 -7
README.md CHANGED
@@ -1,9 +1,17 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
3
  ---
 
4
  # πŸ–ΌοΈ DiffSeg30k -- A multi-turn diffusion-editing dataset for localized AIGC detection
5
 
6
- A dataset for **segmenting diffusion-based edits** β€” ideal for training and evaluating models that localize edited regions and identify the underlying diffusion model
7
 
8
  ## πŸ“ Dataset Usage
9
  - `xxxxxxxx.image.png`: Edited images. Each image may have undergone 1, 2, or 3 editing operations.
@@ -35,9 +43,4 @@ Each mask is a grayscale image (PNG format), where pixel values correspond to a
35
 
36
  ## πŸ“Œ Notes
37
 
38
- - Each edited image may be edited **multiple turns**, so the corresponding mask may contain several different **label values** ranging from 0 to 8.
39
-
40
- ## πŸ“„ License
41
-
42
- Apache-2.0
43
-
 
1
  ---
2
  license: apache-2.0
3
+ task_categories:
4
+ - image-segmentation
5
+ tags:
6
+ - aigc-detection
7
+ - diffusion-editing
8
+ - image-forgery-detection
9
+ - diffusion-models
10
  ---
11
+
12
  # πŸ–ΌοΈ DiffSeg30k -- A multi-turn diffusion-editing dataset for localized AIGC detection
13
 
14
+ A dataset for **segmenting diffusion-based edits** β€” ideal for training and evaluating models that localize edited regions and identify the underlying diffusion model, as presented in the paper [DiffSeg30k: A Multi-Turn Diffusion Editing Benchmark for Localized AIGC Detection](https://huggingface.co/papers/2511.19111).
15
 
16
  ## πŸ“ Dataset Usage
17
  - `xxxxxxxx.image.png`: Edited images. Each image may have undergone 1, 2, or 3 editing operations.
 
43
 
44
  ## πŸ“Œ Notes
45
 
46
+ - Each edited image may be edited **multiple turns**, so the corresponding mask may contain several different **label values** ranging from 0 to 8.