Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
332
1.92k
mask
imagewidth (px)
332
1.92k
End of preview. Expand in Data Studio

Polyp Segmentation Generalization Benchmark

Dataset Description

This benchmark dataset is designed for evaluating cross-domain generalization in polyp segmentation. It contains training data from mixed Kvasir-SEG and CVC-ClinicDB sources, with multiple test sets from different colonoscopy databases for comprehensive evaluation.

  • Task: Binary segmentation (polyp vs. background)
  • Modality: Colonoscopy/Endoscopy
  • Format: PNG images with binary masks

Dataset Structure

polyp-seg-generalization-bench/
β”œβ”€β”€ train/               # Mixed Kvasir + ClinicDB training data
β”‚   β”œβ”€β”€ images/
β”‚   └── masks/
β”œβ”€β”€ test_cvc300/         # CVC-300 test set
β”‚   β”œβ”€β”€ images/
β”‚   └── masks/
β”œβ”€β”€ test_cvc_clinicdb/   # CVC-ClinicDB test set
β”‚   β”œβ”€β”€ images/
β”‚   └── masks/
β”œβ”€β”€ test_cvc_colondb/    # CVC-ColonDB test set
β”‚   β”œβ”€β”€ images/
β”‚   └── masks/
β”œβ”€β”€ test_etis/           # ETIS-LaribPolypDB test set
β”‚   β”œβ”€β”€ images/
β”‚   └── masks/
└── test_kvasir/         # Kvasir test set
    β”œβ”€β”€ images/
    └── masks/

Splits

Split Description Source
train Mixed training data Kvasir-SEG + CVC-ClinicDB
test_cvc300 CVC-300 test set CVC-300
test_cvc_clinicdb CVC-ClinicDB test set CVC-ClinicDB
test_cvc_colondb CVC-ColonDB test set CVC-ColonDB
test_etis ETIS test set ETIS-LaribPolypDB
test_kvasir Kvasir test set Kvasir-SEG

Citation

If you use this dataset, please cite the original datasets:

@inproceedings{jha2020kvasir,
  title={Kvasir-SEG: A Segmented Polyp Dataset},
  author={Jha, Debesh and others},
  booktitle={MMM},
  year={2020}
}

@article{bernal2015wm,
  title={WM-DOVA maps for accurate polyp highlighting in colonoscopy},
  author={Bernal, Jorge and others},
  journal={Computerized Medical Imaging and Graphics},
  year={2015}
}

@article{tajbakhsh2015automated,
  title={Automated polyp detection in colonoscopy videos using shape and context information},
  author={Tajbakhsh, Nima and others},
  journal={IEEE TMI},
  year={2015}
}

@article{silva2014toward,
  title={Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer},
  author={Silva, Juan and others},
  journal={IJCARS},
  year={2014}
}

Generalization Benchmark Reference:

@inproceedings{fan2020pranet,
  title={PraNet: Parallel Reverse Attention Network for Polyp Segmentation},
  author={Fan, Deng-Ping and others},
  booktitle={MICCAI},
  year={2020}
}

```bibtex
@article{chang2024esfpnet,
  title={ESFPNet: Efficient Stage-Wise Feature Pyramid on Mix Transformer for Deep Learning-Based Cancer Analysis in Endoscopic Video},
  author={Chang, Qi and Ahmad, Danish and Toth, Jennifer and Bascom, Rebecca and Higgins, William E},
  journal={Journal of Imaging},
  volume={10},
  number={8},
  pages={191},
  year={2024},
  publisher={MDPI}
}

## Usage

```python
from datasets import load_dataset

# Load dataset
dataset = load_dataset("Angelou0516/polyp-seg-generalization-bench")

# Access splits
train_data = dataset['train']
test_cvc300 = dataset['test_cvc300']
test_etis = dataset['test_etis']

# Access a sample
sample = train_data[0]
image = sample['file_name']  # Image
mask = sample['mask_file_name']  # Segmentation mask

License

Please refer to the original dataset licenses and citation requirements.

Downloads last month
125