Datasets:
Search is not available for this dataset
image
imagewidth (px) 332
1.92k
| mask
imagewidth (px) 332
1.92k
|
|---|---|
End of preview. Expand
in Data Studio
Polyp Segmentation Generalization Benchmark
Dataset Description
This benchmark dataset is designed for evaluating cross-domain generalization in polyp segmentation. It contains training data from mixed Kvasir-SEG and CVC-ClinicDB sources, with multiple test sets from different colonoscopy databases for comprehensive evaluation.
- Task: Binary segmentation (polyp vs. background)
- Modality: Colonoscopy/Endoscopy
- Format: PNG images with binary masks
Dataset Structure
polyp-seg-generalization-bench/
βββ train/ # Mixed Kvasir + ClinicDB training data
β βββ images/
β βββ masks/
βββ test_cvc300/ # CVC-300 test set
β βββ images/
β βββ masks/
βββ test_cvc_clinicdb/ # CVC-ClinicDB test set
β βββ images/
β βββ masks/
βββ test_cvc_colondb/ # CVC-ColonDB test set
β βββ images/
β βββ masks/
βββ test_etis/ # ETIS-LaribPolypDB test set
β βββ images/
β βββ masks/
βββ test_kvasir/ # Kvasir test set
βββ images/
βββ masks/
Splits
| Split | Description | Source |
|---|---|---|
| train | Mixed training data | Kvasir-SEG + CVC-ClinicDB |
| test_cvc300 | CVC-300 test set | CVC-300 |
| test_cvc_clinicdb | CVC-ClinicDB test set | CVC-ClinicDB |
| test_cvc_colondb | CVC-ColonDB test set | CVC-ColonDB |
| test_etis | ETIS test set | ETIS-LaribPolypDB |
| test_kvasir | Kvasir test set | Kvasir-SEG |
Citation
If you use this dataset, please cite the original datasets:
@inproceedings{jha2020kvasir,
title={Kvasir-SEG: A Segmented Polyp Dataset},
author={Jha, Debesh and others},
booktitle={MMM},
year={2020}
}
@article{bernal2015wm,
title={WM-DOVA maps for accurate polyp highlighting in colonoscopy},
author={Bernal, Jorge and others},
journal={Computerized Medical Imaging and Graphics},
year={2015}
}
@article{tajbakhsh2015automated,
title={Automated polyp detection in colonoscopy videos using shape and context information},
author={Tajbakhsh, Nima and others},
journal={IEEE TMI},
year={2015}
}
@article{silva2014toward,
title={Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer},
author={Silva, Juan and others},
journal={IJCARS},
year={2014}
}
Generalization Benchmark Reference:
@inproceedings{fan2020pranet,
title={PraNet: Parallel Reverse Attention Network for Polyp Segmentation},
author={Fan, Deng-Ping and others},
booktitle={MICCAI},
year={2020}
}
```bibtex
@article{chang2024esfpnet,
title={ESFPNet: Efficient Stage-Wise Feature Pyramid on Mix Transformer for Deep Learning-Based Cancer Analysis in Endoscopic Video},
author={Chang, Qi and Ahmad, Danish and Toth, Jennifer and Bascom, Rebecca and Higgins, William E},
journal={Journal of Imaging},
volume={10},
number={8},
pages={191},
year={2024},
publisher={MDPI}
}
## Usage
```python
from datasets import load_dataset
# Load dataset
dataset = load_dataset("Angelou0516/polyp-seg-generalization-bench")
# Access splits
train_data = dataset['train']
test_cvc300 = dataset['test_cvc300']
test_etis = dataset['test_etis']
# Access a sample
sample = train_data[0]
image = sample['file_name'] # Image
mask = sample['mask_file_name'] # Segmentation mask
License
Please refer to the original dataset licenses and citation requirements.
- Downloads last month
- 125