"""Dataset class for Individuality Of Handwriting dataset.""" import pathlib from datasets.tasks import ImageClassification import datasets _BASE_URL = "https://cedar.buffalo.edu/NIJ/data/signatures.rar" _HOMEPAGE = "https://cedar.buffalo.edu/NIJ/projectinfo.html" _DESCRIPTION = """ This dataset consists of handwriting samples of 1500 individuals, representative of the US population with respect to gender, age, ethnic groups... """ _NAMES = [ "original", "forgeries", ] class IndividualityOfHandwriting(datasets.GeneratorBasedBuilder): """Food-101 Images dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "label": datasets.ClassLabel(names=_NAMES), "individual": datasets.Value("uint8"), "figure": datasets.Value("uint8"), } ), supervised_keys=("image", "label"), homepage=_HOMEPAGE, task_templates=[ImageClassification(image_column="image", label_column="label")], ) def _split_generators(self, dl_manager): archive_path = dl_manager.download_and_extract(_BASE_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_dir": archive_path, }, ), ] def _generate_examples(self, data_dir): """Generate images and labels for splits.""" rglob = pathlib.Path(data_dir).rglob("*.png") for index, filepath in enumerate(rglob): filename = filepath.with_suffix("").name label, individual, figure = filename.split("_") yield index, { "image": str(filepath), "label": label, "individual": individual, "figure": figure, }