6c6b0e01a0856a4e21e4c50e08c88332
This model is a fine-tuned version of FacebookAI/xlm-roberta-large-finetuned-conll03-english on the nyu-mll/glue [wnli] dataset. It achieves the following results on the evaluation set:
- Loss: 0.6862
- Data Size: 1.0
- Epoch Runtime: 8.7474
- Accuracy: 0.5625
- F1 Macro: 0.36
- Rouge1: 0.5625
- Rouge2: 0.0
- Rougel: 0.5625
- Rougelsum: 0.5625
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7119 | 0 | 0.7446 | 0.4375 | 0.3043 | 0.4375 | 0.0 | 0.4375 | 0.4375 |
| No log | 1 | 19 | 0.6964 | 0.0078 | 1.1185 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| No log | 2 | 38 | 0.7413 | 0.0156 | 2.1725 | 0.4375 | 0.3043 | 0.4375 | 0.0 | 0.4375 | 0.4375 |
| No log | 3 | 57 | 0.6948 | 0.0312 | 2.7221 | 0.4688 | 0.3637 | 0.4688 | 0.0 | 0.4688 | 0.4688 |
| No log | 4 | 76 | 0.6875 | 0.0625 | 3.4576 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| No log | 5 | 95 | 0.6856 | 0.125 | 4.0438 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.083 | 6 | 114 | 0.6912 | 0.25 | 4.7979 | 0.5 | 0.4182 | 0.5 | 0.0 | 0.5 | 0.5 |
| 0.083 | 7 | 133 | 0.6894 | 0.5 | 6.2060 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.5246 | 8.0 | 152 | 0.6873 | 1.0 | 8.7311 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.5246 | 9.0 | 171 | 0.6854 | 1.0 | 9.2789 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.5246 | 10.0 | 190 | 0.7159 | 1.0 | 6.9896 | 0.4375 | 0.3043 | 0.4375 | 0.0 | 0.4375 | 0.4375 |
| 0.7048 | 11.0 | 209 | 0.7186 | 1.0 | 7.5326 | 0.4375 | 0.3043 | 0.4375 | 0.0 | 0.4375 | 0.4375 |
| 0.7048 | 12.0 | 228 | 0.6844 | 1.0 | 7.2992 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.7048 | 13.0 | 247 | 0.6892 | 1.0 | 7.6236 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.7065 | 14.0 | 266 | 0.6862 | 1.0 | 7.8478 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.7065 | 15.0 | 285 | 0.7049 | 1.0 | 8.6253 | 0.4375 | 0.3043 | 0.4375 | 0.0 | 0.4375 | 0.4375 |
| 0.7047 | 16.0 | 304 | 0.6862 | 1.0 | 8.7474 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 1