block_stride + fixes + readme
Browse files- modeling_lsg_bart.py +24 -229
modeling_lsg_bart.py
CHANGED
|
@@ -54,15 +54,15 @@ class LSGBartConfig(BartConfig):
|
|
| 54 |
self.sparsity_factor = sparsity_factor
|
| 55 |
self.sparsity_type = sparsity_type
|
| 56 |
|
| 57 |
-
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride"]:
|
| 58 |
logger.warning(
|
| 59 |
-
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride'], setting sparsity_type=None, computation will skip sparse attention")
|
| 60 |
self.sparsity_type = None
|
| 61 |
|
| 62 |
-
if self.sparsity_type
|
| 63 |
if self.sparsity_factor > self.encoder_attention_heads:
|
| 64 |
logger.warning(
|
| 65 |
-
"[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride sparsity"
|
| 66 |
)
|
| 67 |
|
| 68 |
if self.num_global_tokens < 1:
|
|
@@ -412,6 +412,7 @@ class LSGBartEncoderAttention(BaseSelfAttention):
|
|
| 412 |
"pooling": self.get_sparse_tokens_with_pooling,
|
| 413 |
"lsh": self.get_sparse_tokens_with_lsh,
|
| 414 |
"stride": self.get_sparse_tokens_with_stride,
|
|
|
|
| 415 |
}
|
| 416 |
|
| 417 |
self.sparsity_type = config.sparsity_type
|
|
@@ -480,29 +481,32 @@ class LSGBartEncoderAttention(BaseSelfAttention):
|
|
| 480 |
sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
|
| 481 |
sparse_idx = sparse_idx.expand(n, h, -1, 1)
|
| 482 |
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
|
| 490 |
-
|
| 491 |
t, b = self.block_size, t // self.block_size
|
| 492 |
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device)
|
| 493 |
sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor)
|
| 494 |
sparse_idx = (sparse_idx % t)
|
| 495 |
-
#sparse_idx[..., -t//2:, :] = (sparse_idx[..., -t//2:, :] + t//2) % t
|
| 496 |
sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
|
| 497 |
sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)
|
| 498 |
-
"""
|
| 499 |
|
| 500 |
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
|
| 501 |
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
|
| 502 |
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
|
| 503 |
|
| 504 |
return keys, values, mask
|
| 505 |
-
|
| 506 |
def get_sparse_tokens_with_lsh(self, keys, values, mask):
|
| 507 |
|
| 508 |
if self.sparsity_factor == 1:
|
|
@@ -1163,25 +1167,13 @@ class LSGBartEncoder(LSGBartPretrainedModel):
|
|
| 1163 |
pad = t % self.block_size
|
| 1164 |
|
| 1165 |
# Check if t is multiple of block_size and pad
|
| 1166 |
-
if t > b and pad > 0:
|
| 1167 |
pad_length = self.block_size - pad
|
| 1168 |
if input_ids is not None:
|
| 1169 |
input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx)
|
| 1170 |
else:
|
| 1171 |
inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
|
| 1172 |
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0)
|
| 1173 |
-
|
| 1174 |
-
# else adaptive sequence length
|
| 1175 |
-
elif self.adaptive:
|
| 1176 |
-
# Get last non zero mask index
|
| 1177 |
-
s = int(attention_mask.cumsum(dim=-1).argmax(dim=-1).max()) + 1
|
| 1178 |
-
if s < t and self.block_size is not None:
|
| 1179 |
-
s = max(2, s // self.block_size + 1) * self.block_size if s > b else s
|
| 1180 |
-
if input_ids is not None:
|
| 1181 |
-
input_ids = input_ids[:, :s]
|
| 1182 |
-
else:
|
| 1183 |
-
inputs_embeds = inputs_embeds[:, :s]
|
| 1184 |
-
attention_mask = attention_mask[:, :s]
|
| 1185 |
|
| 1186 |
n, t_ = attention_mask.size()
|
| 1187 |
|
|
@@ -1207,9 +1199,7 @@ class LSGBartEncoder(LSGBartPretrainedModel):
|
|
| 1207 |
offset = 0
|
| 1208 |
|
| 1209 |
# Adapt sequence to initial shape
|
| 1210 |
-
if diff
|
| 1211 |
-
context = torch.nn.functional.pad(context.transpose(-1, -2), pad=(0, diff), value=0).transpose(-1, -2)
|
| 1212 |
-
elif diff < 0:
|
| 1213 |
context = context[:, :t + offset]
|
| 1214 |
|
| 1215 |
if return_dict:
|
|
@@ -1321,7 +1311,7 @@ class LSGBartEncoder(LSGBartPretrainedModel):
|
|
| 1321 |
)
|
| 1322 |
|
| 1323 |
|
| 1324 |
-
class LSGBartDecoder(LSGBartPretrainedModel):
|
| 1325 |
"""
|
| 1326 |
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`LSGBartDecoderLayer`
|
| 1327 |
Args:
|
|
@@ -1330,8 +1320,9 @@ class LSGBartDecoder(LSGBartPretrainedModel):
|
|
| 1330 |
"""
|
| 1331 |
|
| 1332 |
def __init__(self, config, embed_tokens=None):
|
| 1333 |
-
|
| 1334 |
-
|
|
|
|
| 1335 |
self.dropout = config.dropout
|
| 1336 |
self.layerdrop = config.decoder_layerdrop
|
| 1337 |
self.padding_idx = config.pad_token_id
|
|
@@ -1356,202 +1347,6 @@ class LSGBartDecoder(LSGBartPretrainedModel):
|
|
| 1356 |
# Initialize weights and apply final processing
|
| 1357 |
self.post_init()
|
| 1358 |
|
| 1359 |
-
def get_input_embeddings(self):
|
| 1360 |
-
return self.embed_tokens
|
| 1361 |
-
|
| 1362 |
-
def set_input_embeddings(self, value):
|
| 1363 |
-
self.embed_tokens = value
|
| 1364 |
-
|
| 1365 |
-
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 1366 |
-
# create causal mask
|
| 1367 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1368 |
-
combined_attention_mask = None
|
| 1369 |
-
if input_shape[-1] > 1:
|
| 1370 |
-
combined_attention_mask = _make_causal_mask(
|
| 1371 |
-
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
|
| 1372 |
-
).to(self.device)
|
| 1373 |
-
|
| 1374 |
-
if attention_mask is not None:
|
| 1375 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1376 |
-
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
| 1377 |
-
combined_attention_mask = (
|
| 1378 |
-
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 1379 |
-
)
|
| 1380 |
-
|
| 1381 |
-
return combined_attention_mask
|
| 1382 |
-
|
| 1383 |
-
def resize_inputs(self, inputs_embeds, attention_mask):
|
| 1384 |
-
pad = 0
|
| 1385 |
-
|
| 1386 |
-
max_len = int(attention_mask.sum(dim=-1).max())
|
| 1387 |
-
pad = attention_mask.size()[-1] - max_len
|
| 1388 |
-
inputs_embeds = inputs_embeds[:, :max_len]
|
| 1389 |
-
attention_mask = attention_mask[..., :max_len]
|
| 1390 |
-
return pad, inputs_embeds, attention_mask
|
| 1391 |
-
|
| 1392 |
-
def forward(
|
| 1393 |
-
self,
|
| 1394 |
-
input_ids=None,
|
| 1395 |
-
attention_mask=None,
|
| 1396 |
-
encoder_hidden_states=None,
|
| 1397 |
-
encoder_attention_mask=None,
|
| 1398 |
-
head_mask=None,
|
| 1399 |
-
cross_attn_head_mask=None,
|
| 1400 |
-
past_key_values=None,
|
| 1401 |
-
inputs_embeds=None,
|
| 1402 |
-
use_cache=None,
|
| 1403 |
-
output_attentions=None,
|
| 1404 |
-
output_hidden_states=None,
|
| 1405 |
-
return_dict=None,
|
| 1406 |
-
):
|
| 1407 |
-
|
| 1408 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1409 |
-
output_hidden_states = (
|
| 1410 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1411 |
-
)
|
| 1412 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1413 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1414 |
-
|
| 1415 |
-
# retrieve input_ids and inputs_embeds
|
| 1416 |
-
if input_ids is not None and inputs_embeds is not None:
|
| 1417 |
-
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 1418 |
-
elif input_ids is not None:
|
| 1419 |
-
input_shape = input_ids.size()
|
| 1420 |
-
input_ids = input_ids.view(-1, input_shape[-1])
|
| 1421 |
-
elif inputs_embeds is not None:
|
| 1422 |
-
input_shape = inputs_embeds.size()[:-1]
|
| 1423 |
-
else:
|
| 1424 |
-
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 1425 |
-
|
| 1426 |
-
# past_key_values_length
|
| 1427 |
-
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 1428 |
-
|
| 1429 |
-
if inputs_embeds is None:
|
| 1430 |
-
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
| 1431 |
-
|
| 1432 |
-
# Resize to reduce computation
|
| 1433 |
-
pad = 0
|
| 1434 |
-
if self.adaptive:
|
| 1435 |
-
if attention_mask is not None:
|
| 1436 |
-
pad, inputs_embeds, attention_mask = self.resize_inputs(inputs_embeds, attention_mask)
|
| 1437 |
-
input_shape = inputs_embeds.size()[:-1]
|
| 1438 |
-
if encoder_attention_mask is not None:
|
| 1439 |
-
_, encoder_hidden_states, encoder_attention_mask = self.resize_inputs(encoder_hidden_states, encoder_attention_mask)
|
| 1440 |
-
|
| 1441 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
| 1442 |
-
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
| 1443 |
-
)
|
| 1444 |
-
|
| 1445 |
-
# expand encoder attention mask
|
| 1446 |
-
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
| 1447 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 1448 |
-
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
| 1449 |
-
|
| 1450 |
-
# embed positions
|
| 1451 |
-
positions = self.embed_positions(input_shape, past_key_values_length)
|
| 1452 |
-
|
| 1453 |
-
hidden_states = inputs_embeds + positions
|
| 1454 |
-
hidden_states = self.layernorm_embedding(hidden_states)
|
| 1455 |
-
|
| 1456 |
-
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
| 1457 |
-
|
| 1458 |
-
# decoder layers
|
| 1459 |
-
all_hidden_states = () if output_hidden_states else None
|
| 1460 |
-
all_self_attns = () if output_attentions else None
|
| 1461 |
-
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
| 1462 |
-
next_decoder_cache = () if use_cache else None
|
| 1463 |
-
|
| 1464 |
-
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
| 1465 |
-
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
| 1466 |
-
if attn_mask is not None:
|
| 1467 |
-
if attn_mask.size()[0] != (len(self.layers)):
|
| 1468 |
-
raise ValueError(
|
| 1469 |
-
"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
| 1470 |
-
)
|
| 1471 |
-
|
| 1472 |
-
for idx, decoder_layer in enumerate(self.layers):
|
| 1473 |
-
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
| 1474 |
-
if output_hidden_states:
|
| 1475 |
-
all_hidden_states += (hidden_states,)
|
| 1476 |
-
dropout_probability = random.uniform(0, 1)
|
| 1477 |
-
if self.training and (dropout_probability < self.layerdrop):
|
| 1478 |
-
continue
|
| 1479 |
-
|
| 1480 |
-
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 1481 |
-
|
| 1482 |
-
if self.gradient_checkpointing and self.training:
|
| 1483 |
-
|
| 1484 |
-
if use_cache:
|
| 1485 |
-
logger.warning(
|
| 1486 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1487 |
-
)
|
| 1488 |
-
use_cache = False
|
| 1489 |
-
|
| 1490 |
-
def create_custom_forward(module):
|
| 1491 |
-
def custom_forward(*inputs):
|
| 1492 |
-
# None for past_key_value
|
| 1493 |
-
return module(*inputs, output_attentions, use_cache)
|
| 1494 |
-
|
| 1495 |
-
return custom_forward
|
| 1496 |
-
|
| 1497 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 1498 |
-
create_custom_forward(decoder_layer),
|
| 1499 |
-
hidden_states,
|
| 1500 |
-
attention_mask,
|
| 1501 |
-
encoder_hidden_states,
|
| 1502 |
-
encoder_attention_mask,
|
| 1503 |
-
head_mask[idx] if head_mask is not None else None,
|
| 1504 |
-
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
| 1505 |
-
None,
|
| 1506 |
-
)
|
| 1507 |
-
else:
|
| 1508 |
-
|
| 1509 |
-
layer_outputs = decoder_layer(
|
| 1510 |
-
hidden_states,
|
| 1511 |
-
attention_mask=attention_mask,
|
| 1512 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 1513 |
-
encoder_attention_mask=encoder_attention_mask,
|
| 1514 |
-
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
| 1515 |
-
cross_attn_layer_head_mask=(
|
| 1516 |
-
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
| 1517 |
-
),
|
| 1518 |
-
past_key_value=past_key_value,
|
| 1519 |
-
output_attentions=output_attentions,
|
| 1520 |
-
use_cache=use_cache,
|
| 1521 |
-
)
|
| 1522 |
-
hidden_states = layer_outputs[0]
|
| 1523 |
-
|
| 1524 |
-
if use_cache:
|
| 1525 |
-
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
| 1526 |
-
|
| 1527 |
-
if output_attentions:
|
| 1528 |
-
all_self_attns += (layer_outputs[1],)
|
| 1529 |
-
|
| 1530 |
-
if encoder_hidden_states is not None:
|
| 1531 |
-
all_cross_attentions += (layer_outputs[2],)
|
| 1532 |
-
|
| 1533 |
-
# Resize to original shape
|
| 1534 |
-
hidden_states = torch.nn.functional.pad(hidden_states.transpose(-1, -2), pad=(0, pad), value=0).transpose(-1, -2)
|
| 1535 |
-
|
| 1536 |
-
# add hidden states from the last decoder layer
|
| 1537 |
-
if output_hidden_states:
|
| 1538 |
-
all_hidden_states += (hidden_states,)
|
| 1539 |
-
|
| 1540 |
-
next_cache = next_decoder_cache if use_cache else None
|
| 1541 |
-
if not return_dict:
|
| 1542 |
-
return tuple(
|
| 1543 |
-
v
|
| 1544 |
-
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
| 1545 |
-
if v is not None
|
| 1546 |
-
)
|
| 1547 |
-
return BaseModelOutputWithPastAndCrossAttentions(
|
| 1548 |
-
last_hidden_state=hidden_states,
|
| 1549 |
-
past_key_values=next_cache,
|
| 1550 |
-
hidden_states=all_hidden_states,
|
| 1551 |
-
attentions=all_self_attns,
|
| 1552 |
-
cross_attentions=all_cross_attentions,
|
| 1553 |
-
)
|
| 1554 |
-
|
| 1555 |
|
| 1556 |
class LSGBartModel(LSGBartPretrainedModel):
|
| 1557 |
|
|
|
|
| 54 |
self.sparsity_factor = sparsity_factor
|
| 55 |
self.sparsity_type = sparsity_type
|
| 56 |
|
| 57 |
+
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
|
| 58 |
logger.warning(
|
| 59 |
+
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], setting sparsity_type=None, computation will skip sparse attention")
|
| 60 |
self.sparsity_type = None
|
| 61 |
|
| 62 |
+
if self.sparsity_type in ["stride", "block_stride"]:
|
| 63 |
if self.sparsity_factor > self.encoder_attention_heads:
|
| 64 |
logger.warning(
|
| 65 |
+
"[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride/block_stride sparsity"
|
| 66 |
)
|
| 67 |
|
| 68 |
if self.num_global_tokens < 1:
|
|
|
|
| 412 |
"pooling": self.get_sparse_tokens_with_pooling,
|
| 413 |
"lsh": self.get_sparse_tokens_with_lsh,
|
| 414 |
"stride": self.get_sparse_tokens_with_stride,
|
| 415 |
+
"block_stride": self.get_sparse_tokens_with_block_stride,
|
| 416 |
}
|
| 417 |
|
| 418 |
self.sparsity_type = config.sparsity_type
|
|
|
|
| 481 |
sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
|
| 482 |
sparse_idx = sparse_idx.expand(n, h, -1, 1)
|
| 483 |
|
| 484 |
+
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
|
| 485 |
+
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
|
| 486 |
+
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
|
| 487 |
+
|
| 488 |
+
return keys, values, mask
|
| 489 |
+
|
| 490 |
+
def get_sparse_tokens_with_block_stride(self, keys, values, mask):
|
| 491 |
+
|
| 492 |
+
if self.sparsity_factor == 1:
|
| 493 |
+
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
| 494 |
+
|
| 495 |
+
n, h, t, d = keys.size()
|
| 496 |
|
|
|
|
| 497 |
t, b = self.block_size, t // self.block_size
|
| 498 |
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device)
|
| 499 |
sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor)
|
| 500 |
sparse_idx = (sparse_idx % t)
|
|
|
|
| 501 |
sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
|
| 502 |
sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)
|
|
|
|
| 503 |
|
| 504 |
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
|
| 505 |
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
|
| 506 |
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
|
| 507 |
|
| 508 |
return keys, values, mask
|
| 509 |
+
|
| 510 |
def get_sparse_tokens_with_lsh(self, keys, values, mask):
|
| 511 |
|
| 512 |
if self.sparsity_factor == 1:
|
|
|
|
| 1167 |
pad = t % self.block_size
|
| 1168 |
|
| 1169 |
# Check if t is multiple of block_size and pad
|
| 1170 |
+
if self.adaptive and t > b and pad > 0:
|
| 1171 |
pad_length = self.block_size - pad
|
| 1172 |
if input_ids is not None:
|
| 1173 |
input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx)
|
| 1174 |
else:
|
| 1175 |
inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
|
| 1176 |
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1177 |
|
| 1178 |
n, t_ = attention_mask.size()
|
| 1179 |
|
|
|
|
| 1199 |
offset = 0
|
| 1200 |
|
| 1201 |
# Adapt sequence to initial shape
|
| 1202 |
+
if diff < 0:
|
|
|
|
|
|
|
| 1203 |
context = context[:, :t + offset]
|
| 1204 |
|
| 1205 |
if return_dict:
|
|
|
|
| 1311 |
)
|
| 1312 |
|
| 1313 |
|
| 1314 |
+
class LSGBartDecoder(BartDecoder, LSGBartPretrainedModel):
|
| 1315 |
"""
|
| 1316 |
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`LSGBartDecoderLayer`
|
| 1317 |
Args:
|
|
|
|
| 1320 |
"""
|
| 1321 |
|
| 1322 |
def __init__(self, config, embed_tokens=None):
|
| 1323 |
+
|
| 1324 |
+
LSGBartPretrainedModel.__init__(self, config)
|
| 1325 |
+
|
| 1326 |
self.dropout = config.dropout
|
| 1327 |
self.layerdrop = config.decoder_layerdrop
|
| 1328 |
self.padding_idx = config.pad_token_id
|
|
|
|
| 1347 |
# Initialize weights and apply final processing
|
| 1348 |
self.post_init()
|
| 1349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1350 |
|
| 1351 |
class LSGBartModel(LSGBartPretrainedModel):
|
| 1352 |
|