--- language: - en - zh tags: - fp8 - quantization - dynamic - vision-language - multimodal - vllm - llm-compressor - internvl3.5 pipeline_tag: image-text-to-text inference: false license: mit --- # 🔥 InternVL3_5-8B-FP8-Dynamic 🔥 This is a **fp8 dynamic (w8a8)** version of [OpenGVLab/InternVL3_5-8B](https://huggingface.co/OpenGVLab/InternVL3_5-8B), optimized for high-performance inference with vLLM. The model utilizes **fp8 dynamic (w8a8)** for optimal performance and deployment. ## 🚀 Key Features - **FP8 Dynamic Quantization**: No calibration required, ready to use immediately - **Vision-Language Optimized**: Specialized quantization recipe that preserves visual understanding - **vLLM Ready**: Seamless integration with vLLM for production deployment - **Memory Efficient**: ~50% memory reduction compared to FP16 original - **Performance Boost**: Significant faster inference on H100/L40S GPUs ## 📊 Model Details - **Original Model**: [OpenGVLab/InternVL3_5-8B](https://huggingface.co/OpenGVLab/InternVL3_5-8B) - **Source Model**: OpenGVLab/InternVL3_5-8B - **Quantized Model**: InternVL3_5-8B-FP8-Dynamic - **Quantization Method**: FP8 Dynamic (W8A8) - **Quantization Library**: [LLM Compressor](https://github.com/vllm-project/llm-compressor) v0.7.1 - **Quantized by**: [brandonbeiler](https://huggingface.co/brandonbeiler) ## 🔧 Usage ### With vLLM (Recommended) ```python from vllm import LLM, SamplingParams # Load the quantized model model = LLM( model="brandonbeiler/InternVL3_5-8B-FP8-Dynamic", trust_remote_code=True, max_model_len=32768, # internvl 3.5 is 32k max context tensor_parallel_size=1, # Adjust based on your GPU setup ) # Generate response sampling_params = SamplingParams(temperature=0.6, max_tokens=512) # internvl 3.5 recommends temp 0.6, especially for thinking mode response = model.generate("Describe this image: ", sampling_params) print(response[0].outputs[0].text) ``` ## 🏗️ Technical Specifications ### Hardware Requirements - **Inference**: ? VRAM (+ VRAM for context) - **Supported GPUs**: H100, L40S, A100 (80GB), RTX 4090 (2x for tensor parallelism) - **GPU Architecture**: Latest NVIDIA GPUs (Ada Lovelace, Hopper and later) and latest AMD GPUs. Recommended for NVIDIA GPUs with compute capability >=9.0 (Hopper and Blackwell) ### Quantization Details - **Weights**: FP8 E4M3 with dynamic per-tensor scales - **Activations**: FP8 E4M3 with dynamic per-tensor scales - **Preserved Components**: Vision tower, embeddings, mlp1 ## 🔬 Package Versions This model was created using: ``` llmcompressor==0.7.1 compressed-tensors==latest transformers==4.55.0 torch==2.7.1 vllm==0.10.1.1 ``` *Quantized with ❤️ using LLM Compressor for the open-source community*