Update README with comprehensive model information
Browse files
README.md
CHANGED
|
@@ -1,199 +1,204 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
-
-
|
| 26 |
-
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
-
|
| 33 |
-
-
|
| 34 |
-
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
## Evaluation
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
|
| 174 |
|
| 175 |
-
|
| 176 |
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
|
| 181 |
-
|
| 182 |
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
-
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
##
|
| 190 |
|
| 191 |
-
[
|
| 192 |
|
| 193 |
-
## Model Card Authors
|
| 194 |
|
| 195 |
-
|
| 196 |
|
| 197 |
## Model Card Contact
|
| 198 |
|
| 199 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
base_model: baidu/ERNIE-4.5-0.3B-Base-PT
|
| 6 |
+
tags:
|
| 7 |
+
- content-safety
|
| 8 |
+
- content-moderation
|
| 9 |
+
- safety
|
| 10 |
+
- lora
|
| 11 |
+
- fine-tuned
|
| 12 |
+
- nvidia-aegis
|
| 13 |
+
- text-classification
|
| 14 |
+
datasets:
|
| 15 |
+
- nvidia/Aegis-AI-Content-Safety-Dataset-2.0
|
| 16 |
+
metrics:
|
| 17 |
+
- perplexity
|
| 18 |
+
- accuracy
|
| 19 |
library_name: transformers
|
| 20 |
+
pipeline_tag: text-classification
|
| 21 |
---
|
| 22 |
|
| 23 |
+
# ERNIE-4.5-0.3B Fine-tuned on Aegis AI Content Safety
|
| 24 |
|
| 25 |
+
## Model Description
|
| 26 |
|
| 27 |
+
This is a fine-tuned version of Baidu's ERNIE-4.5-0.3B-Base, optimized for content safety applications. ERNIE (Enhanced Representation through kNowledge IntEgration) is particularly strong in understanding context and knowledge-enhanced language understanding, making it ideal for nuanced safety detection.
|
| 28 |
|
| 29 |
+
This model was fine-tuned using **LoRA (Low-Rank Adaptation)** on the [NVIDIA Aegis AI Content Safety Dataset 2.0](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0), which contains diverse examples of safe and unsafe content across multiple categories.
|
| 30 |
|
| 31 |
## Model Details
|
| 32 |
|
| 33 |
+
- **Base Model**: [baidu/ERNIE-4.5-0.3B-Base-PT](https://huggingface.co/baidu/ERNIE-4.5-0.3B-Base-PT)
|
| 34 |
+
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
| 35 |
+
- **Dataset**: NVIDIA Aegis AI Content Safety Dataset 2.0
|
| 36 |
+
- **Training Samples**: 2,000 carefully selected samples
|
| 37 |
+
- **Language**: English
|
| 38 |
+
- **License**: Apache 2.0
|
| 39 |
+
|
| 40 |
+
## Capabilities
|
| 41 |
+
|
| 42 |
+
- Context-aware safety detection
|
| 43 |
+
- Knowledge-enhanced content analysis
|
| 44 |
+
- Cultural and linguistic sensitivity
|
| 45 |
+
- Fine-grained threat classification
|
| 46 |
+
- Efficient content safety screening
|
| 47 |
+
|
| 48 |
+
## Intended Use Cases
|
| 49 |
+
|
| 50 |
+
- Cross-cultural content moderation
|
| 51 |
+
- Educational platform safety
|
| 52 |
+
- Lightweight mobile applications
|
| 53 |
+
- Edge device content filtering
|
| 54 |
+
- Multi-lingual safety systems
|
| 55 |
+
|
| 56 |
+
## Training Configuration
|
| 57 |
+
|
| 58 |
+
### LoRA Parameters
|
| 59 |
+
- **Rank (r)**: 16
|
| 60 |
+
- **Alpha**: 32
|
| 61 |
+
- **Dropout**: 0.05
|
| 62 |
+
- **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
|
| 63 |
+
|
| 64 |
+
### Training Hyperparameters
|
| 65 |
+
- **Learning Rate**: 2e-4
|
| 66 |
+
- **Batch Size**: 4 (per device)
|
| 67 |
+
- **Gradient Accumulation Steps**: 4
|
| 68 |
+
- **Effective Batch Size**: 16
|
| 69 |
+
- **Epochs**: 3
|
| 70 |
+
- **Optimizer**: AdamW (8-bit paged)
|
| 71 |
+
- **LR Scheduler**: Cosine with warmup
|
| 72 |
+
- **Warmup Ratio**: 0.1
|
| 73 |
+
- **FP16 Training**: Yes
|
| 74 |
+
- **Max Sequence Length**: 512
|
| 75 |
+
|
| 76 |
+
## Usage
|
| 77 |
+
|
| 78 |
+
### Installation
|
| 79 |
+
|
| 80 |
+
```bash
|
| 81 |
+
pip install transformers torch peft
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
### Basic Usage
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 88 |
+
import torch
|
| 89 |
+
|
| 90 |
+
# Load model and tokenizer
|
| 91 |
+
model_name = "ahczhg/ernie-4.5-0.3b-aegis-safety-lora"
|
| 92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 93 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 94 |
+
model_name,
|
| 95 |
+
torch_dtype=torch.float16,
|
| 96 |
+
device_map="auto"
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Example: Content safety check
|
| 100 |
+
prompt = "### Instruction:\nAnalyze this content for safety: 'Your text here'\n\n### Response:\n"
|
| 101 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 102 |
+
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
outputs = model.generate(
|
| 105 |
+
**inputs,
|
| 106 |
+
max_new_tokens=128,
|
| 107 |
+
temperature=0.7,
|
| 108 |
+
do_sample=True,
|
| 109 |
+
top_p=0.95
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 113 |
+
print(response)
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
### Advanced Usage with Pipeline
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
from transformers import pipeline
|
| 120 |
+
|
| 121 |
+
# Create text generation pipeline
|
| 122 |
+
generator = pipeline(
|
| 123 |
+
"text-generation",
|
| 124 |
+
model="ahczhg/ernie-4.5-0.3b-aegis-safety-lora",
|
| 125 |
+
torch_dtype=torch.float16,
|
| 126 |
+
device_map="auto"
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Generate safety analysis
|
| 130 |
+
result = generator(
|
| 131 |
+
"### Instruction:\nIs this content safe? 'Hello, how are you?'\n\n### Response:\n",
|
| 132 |
+
max_new_tokens=128,
|
| 133 |
+
temperature=0.7,
|
| 134 |
+
do_sample=True
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
print(result[0]['generated_text'])
|
| 138 |
+
```
|
| 139 |
|
| 140 |
## Evaluation
|
| 141 |
|
| 142 |
+
The model was evaluated on a held-out test set from the Aegis AI Content Safety Dataset. Key metrics include:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
- Perplexity on validation set
|
| 145 |
+
- Content safety classification accuracy
|
| 146 |
+
- False positive/negative rates for harmful content detection
|
| 147 |
|
| 148 |
+
## Limitations
|
| 149 |
|
| 150 |
+
- The model is primarily trained on English language content
|
| 151 |
+
- Performance may vary on domain-specific or highly technical content
|
| 152 |
+
- Should be used as part of a comprehensive content moderation system, not as the sole decision-maker
|
| 153 |
+
- May require fine-tuning for specific use cases or content domains
|
| 154 |
+
- The model's outputs should be reviewed by human moderators for critical applications
|
| 155 |
|
| 156 |
+
## Ethical Considerations
|
| 157 |
|
| 158 |
+
- This model is designed to assist in content safety and moderation tasks
|
| 159 |
+
- It should not be used to censor legitimate speech or suppress diverse viewpoints
|
| 160 |
+
- Decisions about content moderation should involve human oversight
|
| 161 |
+
- The model may reflect biases present in the training data
|
| 162 |
+
- Users should implement appropriate safeguards and appeal processes
|
| 163 |
|
| 164 |
+
## Training Data
|
| 165 |
|
| 166 |
+
The model was fine-tuned on the [NVIDIA Aegis AI Content Safety Dataset 2.0](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0), which includes:
|
| 167 |
|
| 168 |
+
- Diverse examples of safe and unsafe content
|
| 169 |
+
- Multiple categories of potentially harmful content
|
| 170 |
+
- Balanced representation of safe content
|
| 171 |
+
- Real-world scenarios and edge cases
|
| 172 |
|
| 173 |
+
## Citation
|
| 174 |
|
| 175 |
+
If you use this model in your research or applications, please cite:
|
| 176 |
|
| 177 |
+
```bibtex
|
| 178 |
+
@misc{ernie_0.3b_aegis_safety,
|
| 179 |
+
author = {ahczhg},
|
| 180 |
+
title = {ERNIE-4.5-0.3B Fine-tuned on Aegis AI Content Safety},
|
| 181 |
+
year = {2025},
|
| 182 |
+
publisher = {HuggingFace},
|
| 183 |
+
howpublished = {\url{https://huggingface.co/ahczhg/ernie-4.5-0.3b-aegis-safety-lora}},
|
| 184 |
+
note = {Fine-tuned on NVIDIA Aegis AI Content Safety Dataset 2.0}
|
| 185 |
+
}
|
| 186 |
+
```
|
| 187 |
|
| 188 |
+
## Acknowledgments
|
| 189 |
|
| 190 |
+
- Base model by the original authors: baidu
|
| 191 |
+
- Dataset provided by NVIDIA
|
| 192 |
+
- Fine-tuning performed using HuggingFace Transformers and PEFT libraries
|
| 193 |
|
| 194 |
+
## Contact
|
| 195 |
|
| 196 |
+
For questions, issues, or feedback, please visit the [model repository](https://huggingface.co/ahczhg/ernie-4.5-0.3b-aegis-safety-lora).
|
| 197 |
|
| 198 |
+
## Model Card Authors
|
| 199 |
|
| 200 |
+
- ahczhg
|
| 201 |
|
| 202 |
## Model Card Contact
|
| 203 |
|
| 204 |
+
- https://huggingface.co/ahczhg
|