ahczhg commited on
Commit
9b20fe7
·
verified ·
1 Parent(s): ae63cab

Update README with comprehensive model information

Browse files
Files changed (1) hide show
  1. README.md +171 -166
README.md CHANGED
@@ -1,199 +1,204 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ base_model: baidu/ERNIE-4.5-0.3B-Base-PT
6
+ tags:
7
+ - content-safety
8
+ - content-moderation
9
+ - safety
10
+ - lora
11
+ - fine-tuned
12
+ - nvidia-aegis
13
+ - text-classification
14
+ datasets:
15
+ - nvidia/Aegis-AI-Content-Safety-Dataset-2.0
16
+ metrics:
17
+ - perplexity
18
+ - accuracy
19
  library_name: transformers
20
+ pipeline_tag: text-classification
21
  ---
22
 
23
+ # ERNIE-4.5-0.3B Fine-tuned on Aegis AI Content Safety
24
 
25
+ ## Model Description
26
 
27
+ This is a fine-tuned version of Baidu's ERNIE-4.5-0.3B-Base, optimized for content safety applications. ERNIE (Enhanced Representation through kNowledge IntEgration) is particularly strong in understanding context and knowledge-enhanced language understanding, making it ideal for nuanced safety detection.
28
 
29
+ This model was fine-tuned using **LoRA (Low-Rank Adaptation)** on the [NVIDIA Aegis AI Content Safety Dataset 2.0](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0), which contains diverse examples of safe and unsafe content across multiple categories.
30
 
31
  ## Model Details
32
 
33
+ - **Base Model**: [baidu/ERNIE-4.5-0.3B-Base-PT](https://huggingface.co/baidu/ERNIE-4.5-0.3B-Base-PT)
34
+ - **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
35
+ - **Dataset**: NVIDIA Aegis AI Content Safety Dataset 2.0
36
+ - **Training Samples**: 2,000 carefully selected samples
37
+ - **Language**: English
38
+ - **License**: Apache 2.0
39
+
40
+ ## Capabilities
41
+
42
+ - Context-aware safety detection
43
+ - Knowledge-enhanced content analysis
44
+ - Cultural and linguistic sensitivity
45
+ - Fine-grained threat classification
46
+ - Efficient content safety screening
47
+
48
+ ## Intended Use Cases
49
+
50
+ - Cross-cultural content moderation
51
+ - Educational platform safety
52
+ - Lightweight mobile applications
53
+ - Edge device content filtering
54
+ - Multi-lingual safety systems
55
+
56
+ ## Training Configuration
57
+
58
+ ### LoRA Parameters
59
+ - **Rank (r)**: 16
60
+ - **Alpha**: 32
61
+ - **Dropout**: 0.05
62
+ - **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
63
+
64
+ ### Training Hyperparameters
65
+ - **Learning Rate**: 2e-4
66
+ - **Batch Size**: 4 (per device)
67
+ - **Gradient Accumulation Steps**: 4
68
+ - **Effective Batch Size**: 16
69
+ - **Epochs**: 3
70
+ - **Optimizer**: AdamW (8-bit paged)
71
+ - **LR Scheduler**: Cosine with warmup
72
+ - **Warmup Ratio**: 0.1
73
+ - **FP16 Training**: Yes
74
+ - **Max Sequence Length**: 512
75
+
76
+ ## Usage
77
+
78
+ ### Installation
79
+
80
+ ```bash
81
+ pip install transformers torch peft
82
+ ```
83
+
84
+ ### Basic Usage
85
+
86
+ ```python
87
+ from transformers import AutoModelForCausalLM, AutoTokenizer
88
+ import torch
89
+
90
+ # Load model and tokenizer
91
+ model_name = "ahczhg/ernie-4.5-0.3b-aegis-safety-lora"
92
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
93
+ model = AutoModelForCausalLM.from_pretrained(
94
+ model_name,
95
+ torch_dtype=torch.float16,
96
+ device_map="auto"
97
+ )
98
+
99
+ # Example: Content safety check
100
+ prompt = "### Instruction:\nAnalyze this content for safety: 'Your text here'\n\n### Response:\n"
101
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
102
+
103
+ with torch.no_grad():
104
+ outputs = model.generate(
105
+ **inputs,
106
+ max_new_tokens=128,
107
+ temperature=0.7,
108
+ do_sample=True,
109
+ top_p=0.95
110
+ )
111
+
112
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
113
+ print(response)
114
+ ```
115
+
116
+ ### Advanced Usage with Pipeline
117
+
118
+ ```python
119
+ from transformers import pipeline
120
+
121
+ # Create text generation pipeline
122
+ generator = pipeline(
123
+ "text-generation",
124
+ model="ahczhg/ernie-4.5-0.3b-aegis-safety-lora",
125
+ torch_dtype=torch.float16,
126
+ device_map="auto"
127
+ )
128
+
129
+ # Generate safety analysis
130
+ result = generator(
131
+ "### Instruction:\nIs this content safe? 'Hello, how are you?'\n\n### Response:\n",
132
+ max_new_tokens=128,
133
+ temperature=0.7,
134
+ do_sample=True
135
+ )
136
+
137
+ print(result[0]['generated_text'])
138
+ ```
139
 
140
  ## Evaluation
141
 
142
+ The model was evaluated on a held-out test set from the Aegis AI Content Safety Dataset. Key metrics include:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
 
144
+ - Perplexity on validation set
145
+ - Content safety classification accuracy
146
+ - False positive/negative rates for harmful content detection
147
 
148
+ ## Limitations
149
 
150
+ - The model is primarily trained on English language content
151
+ - Performance may vary on domain-specific or highly technical content
152
+ - Should be used as part of a comprehensive content moderation system, not as the sole decision-maker
153
+ - May require fine-tuning for specific use cases or content domains
154
+ - The model's outputs should be reviewed by human moderators for critical applications
155
 
156
+ ## Ethical Considerations
157
 
158
+ - This model is designed to assist in content safety and moderation tasks
159
+ - It should not be used to censor legitimate speech or suppress diverse viewpoints
160
+ - Decisions about content moderation should involve human oversight
161
+ - The model may reflect biases present in the training data
162
+ - Users should implement appropriate safeguards and appeal processes
163
 
164
+ ## Training Data
165
 
166
+ The model was fine-tuned on the [NVIDIA Aegis AI Content Safety Dataset 2.0](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0), which includes:
167
 
168
+ - Diverse examples of safe and unsafe content
169
+ - Multiple categories of potentially harmful content
170
+ - Balanced representation of safe content
171
+ - Real-world scenarios and edge cases
172
 
173
+ ## Citation
174
 
175
+ If you use this model in your research or applications, please cite:
176
 
177
+ ```bibtex
178
+ @misc{ernie_0.3b_aegis_safety,
179
+ author = {ahczhg},
180
+ title = {ERNIE-4.5-0.3B Fine-tuned on Aegis AI Content Safety},
181
+ year = {2025},
182
+ publisher = {HuggingFace},
183
+ howpublished = {\url{https://huggingface.co/ahczhg/ernie-4.5-0.3b-aegis-safety-lora}},
184
+ note = {Fine-tuned on NVIDIA Aegis AI Content Safety Dataset 2.0}
185
+ }
186
+ ```
187
 
188
+ ## Acknowledgments
189
 
190
+ - Base model by the original authors: baidu
191
+ - Dataset provided by NVIDIA
192
+ - Fine-tuning performed using HuggingFace Transformers and PEFT libraries
193
 
194
+ ## Contact
195
 
196
+ For questions, issues, or feedback, please visit the [model repository](https://huggingface.co/ahczhg/ernie-4.5-0.3b-aegis-safety-lora).
197
 
198
+ ## Model Card Authors
199
 
200
+ - ahczhg
201
 
202
  ## Model Card Contact
203
 
204
+ - https://huggingface.co/ahczhg