adasnew commited on
Commit
58fcedf
·
1 Parent(s): 62e883b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - xsum
7
+ model-index:
8
+ - name: t5-small-xsum
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-small-xsum
16
+
17
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.3953
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 16
43
+ - total_train_batch_size: 16
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 500
47
+ - num_epochs: 1
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:-----:|:---------------:|
53
+ | 2.8641 | 0.04 | 500 | 2.6202 |
54
+ | 2.7466 | 0.08 | 1000 | 2.5660 |
55
+ | 2.8767 | 0.12 | 1500 | 2.5319 |
56
+ | 2.7099 | 0.16 | 2000 | 2.5107 |
57
+ | 2.7752 | 0.2 | 2500 | 2.4922 |
58
+ | 2.6037 | 0.24 | 3000 | 2.4800 |
59
+ | 2.8236 | 0.27 | 3500 | 2.4677 |
60
+ | 2.7089 | 0.31 | 4000 | 2.4581 |
61
+ | 2.7299 | 0.35 | 4500 | 2.4498 |
62
+ | 2.7498 | 0.39 | 5000 | 2.4420 |
63
+ | 2.6186 | 0.43 | 5500 | 2.4346 |
64
+ | 2.7817 | 0.47 | 6000 | 2.4288 |
65
+ | 2.5559 | 0.51 | 6500 | 2.4239 |
66
+ | 2.6725 | 0.55 | 7000 | 2.4186 |
67
+ | 2.6316 | 0.59 | 7500 | 2.4149 |
68
+ | 2.5561 | 0.63 | 8000 | 2.4115 |
69
+ | 2.5708 | 0.67 | 8500 | 2.4097 |
70
+ | 2.5861 | 0.71 | 9000 | 2.4052 |
71
+ | 2.6363 | 0.74 | 9500 | 2.4024 |
72
+ | 2.7435 | 0.78 | 10000 | 2.4003 |
73
+ | 2.7258 | 0.82 | 10500 | 2.3992 |
74
+ | 2.6113 | 0.86 | 11000 | 2.3983 |
75
+ | 2.6006 | 0.9 | 11500 | 2.3972 |
76
+ | 2.5684 | 0.94 | 12000 | 2.3960 |
77
+ | 2.6181 | 0.98 | 12500 | 2.3953 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.18.0
83
+ - Pytorch 1.10.0+cu111
84
+ - Datasets 2.0.0
85
+ - Tokenizers 0.11.6