import argparse import torch from tqdm import tqdm import random from llava.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_PLACEHOLDER, ) from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import ( process_images, tokenizer_image_token, get_model_name_from_path, ) from PIL import Image import requests from PIL import Image from io import BytesIO import re import os import json import cv2 from pycocotools.mask import encode, decode, frPyObjects import numpy as np #透明度固定0.7 def blend_mask(input_img, binary_mask, alpha=0.7): if input_img.ndim == 2: return input_img mask_image = np.zeros(input_img.shape, np.uint8) mask_image[:, :, 1] = 255 mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2) blend_image = input_img[:, :, :].copy() pos_idx = binary_mask > 0 for ind in range(input_img.ndim): ch_img1 = input_img[:, :, ind] ch_img2 = mask_image[:, :, ind] ch_img3 = blend_image[:, :, ind] ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx] blend_image[:, :, ind] = ch_img3 return blend_image def image_parser(args): print(args.image_file) out = args.image_file.split(args.sep) print(args.sep) print(out) return out def load_image(image_file): if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") return image def load_images(image_files): out = [] for image_file in image_files: image = load_image(image_file) out.append(image) return out prompt = "Please describe the object coverd by the green mask. Format your answer as follows: The object covered by the green mask is" # prompt = "Please focus only on the object covered by the green mask. Describe what it is." # prompt = "Identify the single object covered by the green mask without describing it, and format your answer as follows: The object covered by the green mask is" #prompt = "Identify the single object covered by the green mask without describing it. Note that it is not a hand. Format your answer as follows: The object covered by the green mask is" #prompt = "Identify the single object covered by the grenn mask without describing it. Format your answer as follows: The object covered by the green mask is" #prompt = "Could you help describe the input image?" #prompt="Could you help describe the main object of the input image? Format your answer as follows: The main object of the input image is" #prompt="In this view, identify and describe the object that is most likely for human interaction" model_path = "liuhaotian/llava-v1.5-7b" #root_path = '/data/work-gcp-europe-west4-a/yuqian_fu/datasets/HANDAL' root_path = '/work/yuqian_fu/Ego/data_segswap' #root_path = '/data/work-gcp-europe-west4-a/yuqian_fu/datasets/DAVIS' #data_path = "/data/work-gcp-europe-west4-a/yuqian_fu/Ego/data_segswap/ExoQuery_FullTrain.json" #data_path = "/data/work-gcp-europe-west4-a/yuqian_fu/datasets/HANDAL/handal_test_all.json" data_path = '/work/yuqian_fu/Ego/data_segswap/egoexo_val_framelevel_all.json' save_path = "/work/yuqian_fu/Ego/data_segswap/egoexo_val_badprompt2_20250510_new_v1.json" def eval_model(args): # Model disable_torch_init() model_name = get_model_name_from_path(args.model_path) tokenizer, model, image_processor, context_len = load_pretrained_model( args.model_path, args.model_base, model_name ) qs = args.query image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN if IMAGE_PLACEHOLDER in qs: if model.config.mm_use_im_start_end: qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) else: qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) else: if model.config.mm_use_im_start_end: qs = image_token_se + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs if "llama-2" in model_name.lower(): conv_mode = "llava_llama_2" elif "mistral" in model_name.lower(): conv_mode = "mistral_instruct" elif "v1.6-34b" in model_name.lower(): conv_mode = "chatml_direct" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower(): conv_mode = "mpt" else: conv_mode = "llava_v0" if args.conv_mode is not None and conv_mode != args.conv_mode: print( "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( conv_mode, args.conv_mode, args.conv_mode ) ) else: args.conv_mode = conv_mode conv = conv_templates[args.conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() #image_files_list = image_parser(args) new_data_list = [] with open(data_path, "r") as f: datas = json.load(f) #datas = random.sample(datas,3000) NUM = len(datas)//4 datas = datas[:NUM] #debug #v1 #datas = datas[NUM:2*NUM] #v2 #datas = datas[2*NUM:3*NUM] #v3 #datas = datas[3*NUM:] #v4 #datas = datas[4*NUM: 5*NUM] #v5 #datas = datas[5*NUM: 6*NUM] #v6 #datas = datas[6*NUM: 7*NUM] #v7 # datas = datas[7*NUM:] #v8 # datas = random.sample(datas, 10) #debug total_items = len(datas) # k = 0 for i, data in tqdm(enumerate(datas), total=total_items, desc="Processing"): query_path = data["first_frame_image"] # val_name = query_path.split("/")[0] # vid_root_path = os.path.join(root_path, val_name) # anno_path = os.path.join(vid_root_path, "annotation.json") # with open(anno_path, 'r') as fp: # annotations = json.load(fp) # objs = natsorted(list(annotations["masks"].keys())) # coco_id_to_cont_id = {coco_id: cont_id + 1 for cont_id, coco_id in enumerate(objs)} query_path = os.path.join(root_path, query_path) frame = cv2.imread(query_path) #frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # debug: 可以去掉 # v1,直接使用生成json文件中的缩放的mask # v2,获取takes名称,取出物体字典,逆映射获取物体名字,使用gt中的mask h,w = frame.shape[:2] #针对query是exo的情况 # frame = cv2.resize(frame, (w // 4, h // 4)) for obj in data["first_frame_anns"]: images = [] # debug: 是否在图片中加入mask mask = decode(obj["segmentation"]) mask = cv2.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_NEAREST) out = blend_mask(frame, mask) # 存储可视化 #cv2.imwrite(f'output_image_{k}.jpg', frame) #cv2.imwrite(f'output_image_{k}.jpg', out) #debug image = Image.fromarray(out).convert("RGB") #debug # image.save(f"output_img{k}.jpg") #debug images.append(image) image_sizes = [x.size for x in images] images_tensor = process_images( images, image_processor, model.config ).to(model.device, dtype=torch.float16) input_ids = ( tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") .unsqueeze(0) .cuda() ) with torch.inference_mode(): output_ids = model.generate( input_ids, images=images_tensor, image_sizes=image_sizes, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, top_p=args.top_p, num_beams=args.num_beams, max_new_tokens=args.max_new_tokens, use_cache=True, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() # print(f"{k}:", outputs) #debug # k += 1 obj["text"] = outputs new_data_list.append(data) with open(save_path, "w") as f: json.dump(new_data_list, f) if __name__ == "__main__": # parser = argparse.ArgumentParser() # parser.add_argument("--model-path", type=str, default="facebook/opt-350m") # parser.add_argument("--model-base", type=str, default=None) # parser.add_argument("--image-file", type=str, required=True) # parser.add_argument("--query", type=str, required=True) # parser.add_argument("--conv-mode", type=str, default=None) # parser.add_argument("--sep", type=str, default=",") # parser.add_argument("--temperature", type=float, default=0.2) # parser.add_argument("--top_p", type=float, default=None) # parser.add_argument("--num_beams", type=int, default=1) # parser.add_argument("--max_new_tokens", type=int, default=512) # args = parser.parse_args() args = type('Args', (), { "model_path": model_path, "model_base": None, "model_name": get_model_name_from_path(model_path), "query": prompt, "conv_mode": None, "sep": ",", "temperature": 0, "top_p": None, "num_beams": 1, "max_new_tokens": 512 })() eval_model(args)