import torch from torch import Tensor from scipy.ndimage import gaussian_filter from typing import Optional, List, Tuple def get_id(x: str) -> int: return int(x.split(".")[0]) def generate_density_map(label: Tensor, height: int, width: int, sigma: Optional[float] = None) -> Tensor: """ Generate the density map based on the dot annotations provided by the label. """ density_map = torch.zeros((1, height, width), dtype=torch.float32) if len(label) > 0: assert len(label.shape) == 2 and label.shape[1] == 2, f"label should be a Nx2 tensor, got {label.shape}." label_ = label.long() label_[:, 0] = label_[:, 0].clamp(min=0, max=width - 1) label_[:, 1] = label_[:, 1].clamp(min=0, max=height - 1) density_map[0, label_[:, 1], label_[:, 0]] = 1.0 if sigma is not None: assert sigma > 0, f"sigma should be positive if not None, got {sigma}." density_map = torch.from_numpy(gaussian_filter(density_map, sigma=sigma)) return density_map def collate_fn(batch: List[Tensor]) -> Tuple[Tensor, List[Tensor], Tensor]: batch = list(zip(*batch)) images = batch[0] assert len(images[0].shape) == 4, f"images should be a 4D tensor, got {images[0].shape}." if len(batch) == 4: # image, label, density_map, image_name images = torch.cat(images, 0) points = batch[1] # list of lists of tensors, flatten it points = [p for points_ in points for p in points_] densities = torch.cat(batch[2], 0) image_names = batch[3] # list of lists of strings, flatten it image_names = [name for names_ in image_names for name in names_] return images, points, densities, image_names elif len(batch) == 3: # image, label, density_map images = torch.cat(images, 0) points = batch[1] points = [p for points_ in points for p in points_] densities = torch.cat(batch[2], 0) return images, points, densities elif len(batch) == 2: # image, image_name. NWPU test dataset images = torch.cat(images, 0) image_names = batch[1] image_names = [name for names_ in image_names for name in names_] return images, image_names else: images = torch.cat(images, 0) return images