|
|
import torch |
|
|
from torch import nn, Tensor |
|
|
import torch.nn.functional as F |
|
|
from typing import List, Dict, Optional, Tuple, Union |
|
|
|
|
|
from .dm_loss import DMLoss |
|
|
from .multiscale_mae import MultiscaleMAE |
|
|
from .poisson_nll import PoissonNLL |
|
|
from .zero_inflated_poisson_nll import ZIPoissonNLL, ZICrossEntropy |
|
|
from .utils import _reshape_density, _bin_count |
|
|
|
|
|
|
|
|
EPS = 1e-8 |
|
|
|
|
|
|
|
|
class QuadLoss(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
input_size: int, |
|
|
block_size: int, |
|
|
bins: List[Tuple[float, float]], |
|
|
reg_loss: str = "zipnll", |
|
|
aux_loss: str = "none", |
|
|
weight_cls: float = 1.0, |
|
|
weight_reg: float = 1.0, |
|
|
weight_aux: Optional[float] = None, |
|
|
numItermax: Optional[int] = 100, |
|
|
regularization: Optional[int] = 10.0, |
|
|
scales: Optional[List[int]] = [[1, 2, 4]], |
|
|
min_scale_weight: Optional[float] = 0.0, |
|
|
max_scale_weight: Optional[float] = 1.0, |
|
|
alpha: Optional[float] = 0.5, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
assert input_size % block_size == 0, f"Expected input_size to be divisible by block_size, got {input_size} and {block_size}" |
|
|
assert len(bins) >= 2, f"Expected bins to have at least 2 elements, got {len(bins)}" |
|
|
assert all([len(b) == 2 for b in bins]), f"Expected all bins to be of length 2, got {bins}" |
|
|
bins = [(float(low), float(high)) for low, high in bins] |
|
|
assert all([b[0] <= b[1] for b in bins]), f"Expected each bin to have bin[0] <= bin[1], got {bins}" |
|
|
assert reg_loss in ["zipnll", "pnll", "dm", "msmae", "mae", "mse"], f"Expected reg_loss to be one of ['zipnll', 'pnll', 'dm', 'msmae', 'mae', 'mse'], got {reg_loss}" |
|
|
assert aux_loss in ["zipnll", "pnll", "dm", "msmae", "mae", "mse", "none"], f"Expected aux_loss to be one of ['zipnll', 'pnll', 'dm', 'msmae', 'mae', 'mse', 'none'], got {aux_loss}" |
|
|
|
|
|
assert weight_cls >= 0, f"Expected weight_cls to be non-negative, got {weight_cls}" |
|
|
assert weight_reg >= 0, f"Expected weight_reg to be non-negative, got {weight_reg}" |
|
|
assert not (weight_cls == 0 and weight_reg == 0), "Expected at least one of weight_cls and weight_reg to be non-zero" |
|
|
weight_aux = 0 if aux_loss == "none" or weight_aux is None else weight_aux |
|
|
assert weight_aux >= 0, f"Expected weight_aux to be non-negative, got {weight_aux}" |
|
|
|
|
|
self.input_size = input_size |
|
|
self.block_size = block_size |
|
|
self.bins = bins |
|
|
self.reg_loss = reg_loss |
|
|
self.aux_loss = aux_loss |
|
|
self.weight_cls = weight_cls |
|
|
self.weight_reg = weight_reg |
|
|
self.weight_aux = weight_aux |
|
|
|
|
|
self.num_bins = len(bins) |
|
|
self.num_blocks_h = input_size // block_size |
|
|
self.num_blocks_w = input_size // block_size |
|
|
|
|
|
if reg_loss == "zipnll": |
|
|
self.cls_loss = "zice" |
|
|
self.cls_loss_fn = ZICrossEntropy(bins=bins, reduction="mean") |
|
|
self.reg_loss_fn = ZIPoissonNLL(reduction="mean") |
|
|
else: |
|
|
self.cls_loss = "ce" |
|
|
self.cls_loss_fn = nn.CrossEntropyLoss(reduction="none") |
|
|
if reg_loss == "pnll": |
|
|
self.reg_loss_fn = PoissonNLL(reduction="mean") |
|
|
elif reg_loss == "dm": |
|
|
assert numItermax is not None and numItermax > 0, f"Expected numItermax to be a positive integer, got {numItermax}" |
|
|
assert regularization is not None and regularization > 0, f"Expected regularization to be a positive float, got {regularization}" |
|
|
self.reg_loss_fn = DMLoss( |
|
|
input_size=input_size, |
|
|
block_size=block_size, |
|
|
numItermax=numItermax, |
|
|
regularization=regularization, |
|
|
weight_ot=0.1, |
|
|
weight_tv=0.01, |
|
|
weight_cnt=0, |
|
|
) |
|
|
elif reg_loss == "msmae": |
|
|
assert isinstance(scales, (list, tuple)) and len(scales) > 0 and all(isinstance(s, int) and s > 0 for s in scales), f"Expected scales to be a list of positive integers, got {scales}" |
|
|
assert max_scale_weight >= min_scale_weight >= 0, f"Expected max_scale_weight to be greater than or equal to min_scale_weight, got {min_scale_weight} and {max_scale_weight}" |
|
|
assert 1 > alpha > 0, f"Expected alpha to be between 0 and 1, got {alpha}" |
|
|
self.reg_loss_fn = MultiscaleMAE( |
|
|
scales=sorted(scales), |
|
|
min_scale_weight=min_scale_weight, |
|
|
max_scale_weight=max_scale_weight, |
|
|
alpha=alpha, |
|
|
) |
|
|
elif reg_loss == "mae": |
|
|
self.reg_loss_fn = nn.L1Loss(reduction="none") |
|
|
elif reg_loss == "mse": |
|
|
self.reg_loss_fn = nn.MSELoss(reduction="none") |
|
|
else: |
|
|
self.reg_loss_fn = None |
|
|
|
|
|
if aux_loss == "zipnll": |
|
|
self.aux_loss_fn = ZIPoissonNLL(reduction="mean") |
|
|
elif aux_loss == "pnll": |
|
|
self.aux_loss_fn = PoissonNLL(reduction="mean") |
|
|
elif aux_loss == "dm": |
|
|
assert numItermax is not None and numItermax > 0, f"Expected numItermax to be a positive integer, got {numItermax}" |
|
|
assert regularization is not None and regularization > 0, f"Expected regularization to be a positive float, got {regularization}" |
|
|
self.aux_loss_fn = DMLoss( |
|
|
input_size=input_size, |
|
|
block_size=block_size, |
|
|
numItermax=numItermax, |
|
|
regularization=regularization, |
|
|
weight_ot=0.1, |
|
|
weight_tv=0.01, |
|
|
weight_cnt=0, |
|
|
) |
|
|
elif aux_loss == "msmae": |
|
|
assert isinstance(scales, (list, tuple)) and len(scales) > 0 and all(isinstance(s, int) and s > 0 for s in scales), f"Expected scales to be a list of positive integers, got {scales}" |
|
|
assert max_scale_weight >= min_scale_weight >= 0, f"Expected max_scale_weight to be greater than or equal to min_scale_weight, got {min_scale_weight} and {max_scale_weight}" |
|
|
assert 1 > alpha > 0, f"Expected alpha to be between 0 and 1, got {alpha}" |
|
|
self.aux_loss_fn = MultiscaleMAE( |
|
|
scales=sorted(scales), |
|
|
min_scale_weight=min_scale_weight, |
|
|
max_scale_weight=max_scale_weight, |
|
|
alpha=alpha, |
|
|
) |
|
|
elif aux_loss == "mae": |
|
|
self.aux_loss_fn = nn.L1Loss(reduction="none") |
|
|
elif aux_loss == "mse": |
|
|
self.aux_loss_fn = nn.MSELoss(reduction="none") |
|
|
else: |
|
|
self.aux_loss_fn = None |
|
|
|
|
|
self.cnt_loss_fn = nn.L1Loss(reduction="mean") |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
pred_logit_map: Tensor, |
|
|
pred_den_map: Tensor, |
|
|
gt_den_map: Tensor, |
|
|
gt_points: List[Tensor], |
|
|
pred_logit_pi_map: Optional[Tensor] = None, |
|
|
pred_lambda_map: Optional[Tensor] = None, |
|
|
) -> Tuple[Tensor, Dict[str, Tensor]]: |
|
|
B = pred_den_map.shape[0] |
|
|
assert pred_logit_map.shape[-2:] == (self.num_blocks_h, self.num_blocks_w), f"Expected pred_logit_map to have the spatial dimension of {self.num_blocks_h}x{self.num_blocks_w}, got {pred_logit_map.shape}" |
|
|
if gt_den_map.shape[-2:] != (self.num_blocks_h, self.num_blocks_w): |
|
|
assert gt_den_map.shape[-2:] == (self.input_size, self.input_size), f"Expected gt_den_map to have shape {B, 1, self.input_size, self.input_size}, got {gt_den_map.shape}" |
|
|
gt_den_map = _reshape_density(gt_den_map, block_size=self.block_size) |
|
|
assert pred_den_map.shape == gt_den_map.shape == (B, 1, self.num_blocks_h, self.num_blocks_w), f"Expected pred_den_map and gt_den_map to have shape (B, 1, H, W), got {pred_den_map.shape} and {gt_den_map.shape}" |
|
|
assert len(gt_points) == B, f"Expected gt_points to have length B, got {len(gt_points)}" |
|
|
|
|
|
if self.reg_loss == "zipnll" or self.aux_loss == "zipnll": |
|
|
assert pred_logit_pi_map is not None and pred_logit_pi_map.shape == (B, 2, self.num_blocks_h, self.num_blocks_w), f"Expected pred_logit_pi_map to have shape {B, 2, self.num_blocks_h, self.num_blocks_w}, got {pred_logit_pi_map.shape}" |
|
|
assert pred_lambda_map is not None and pred_lambda_map.shape == (B, 1, self.num_blocks_h, self.num_blocks_w), f"Expected pred_lambda_map to have shape {B, 1, self.num_blocks_h, self.num_blocks_w}, got {pred_lambda_map.shape}" |
|
|
|
|
|
loss_info = {} |
|
|
if self.weight_cls > 0: |
|
|
gt_class_map = _bin_count(gt_den_map, bins=self.bins) |
|
|
if self.cls_loss == "ce": |
|
|
cls_loss = self.cls_loss_fn(pred_logit_map, gt_class_map).sum(dim=(-1, -2)).mean() |
|
|
loss_info["cls_ce_loss"] = cls_loss.detach() |
|
|
else: |
|
|
cls_loss, cls_loss_info = self.cls_loss_fn(pred_logit_map, gt_den_map) |
|
|
loss_info.update(cls_loss_info) |
|
|
else: |
|
|
cls_loss = 0 |
|
|
|
|
|
if self.weight_reg > 0: |
|
|
if self.reg_loss == "zipnll": |
|
|
reg_loss, reg_loss_info = self.reg_loss_fn(pred_logit_pi_map, pred_lambda_map, gt_den_map) |
|
|
elif self.reg_loss == "dm": |
|
|
reg_loss, reg_loss_info = self.reg_loss_fn(pred_den_map, gt_den_map, gt_points) |
|
|
elif self.reg_loss in ["pnll", "msmae"]: |
|
|
reg_loss, reg_loss_info = self.reg_loss_fn(pred_den_map, gt_den_map) |
|
|
else: |
|
|
reg_loss = self.reg_loss_fn(pred_den_map, gt_den_map).sum(dim=(-1, -2)).mean() |
|
|
reg_loss_info = {f"{self.reg_loss}": reg_loss.detach()} |
|
|
reg_loss_info = {f"reg_{k}": v for k, v in reg_loss_info.items()} |
|
|
loss_info.update(reg_loss_info) |
|
|
else: |
|
|
reg_loss = 0 |
|
|
|
|
|
if self.weight_aux > 0: |
|
|
if self.aux_loss == "zipnll": |
|
|
aux_loss, aux_loss_info = self.aux_loss_fn(pred_logit_pi_map, pred_lambda_map, gt_den_map) |
|
|
elif self.aux_loss in ["pnll", "msmae"]: |
|
|
aux_loss, aux_loss_info = self.aux_loss_fn(pred_den_map, gt_den_map) |
|
|
elif self.aux_loss == "dm": |
|
|
aux_loss, aux_loss_info = self.aux_loss_fn(pred_den_map, gt_den_map, gt_points) |
|
|
else: |
|
|
aux_loss = self.aux_loss_fn(pred_den_map, gt_den_map).sum(dim=(-1, -2)).mean() |
|
|
aux_loss_info = {f"{self.aux_loss}": aux_loss.detach()} |
|
|
aux_loss_info = {f"aux_{k}": v for k, v in aux_loss_info.items()} |
|
|
loss_info.update(aux_loss_info) |
|
|
else: |
|
|
aux_loss = 0 |
|
|
|
|
|
gt_cnt = torch.tensor([len(p) for p in gt_points], dtype=torch.float32, device=pred_den_map.device) |
|
|
cnt_loss = self.cnt_loss_fn(pred_den_map.sum(dim=(1, 2, 3)), gt_cnt) |
|
|
loss_info["cnt_loss"] = cnt_loss.detach() |
|
|
|
|
|
total_loss = self.weight_cls * cls_loss + self.weight_reg * reg_loss + self.weight_aux * aux_loss + cnt_loss |
|
|
return total_loss, loss_info |
|
|
|