ZIP-B / datasets /utils.py
Yiming-M's picture
2025-07-31 15:53 🐣
0ecb9aa verified
raw
history blame
2.31 kB
import torch
from torch import Tensor
from scipy.ndimage import gaussian_filter
from typing import Optional, List, Tuple
def get_id(x: str) -> int:
return int(x.split(".")[0])
def generate_density_map(label: Tensor, height: int, width: int, sigma: Optional[float] = None) -> Tensor:
"""
Generate the density map based on the dot annotations provided by the label.
"""
density_map = torch.zeros((1, height, width), dtype=torch.float32)
if len(label) > 0:
assert len(label.shape) == 2 and label.shape[1] == 2, f"label should be a Nx2 tensor, got {label.shape}."
label_ = label.long()
label_[:, 0] = label_[:, 0].clamp(min=0, max=width - 1)
label_[:, 1] = label_[:, 1].clamp(min=0, max=height - 1)
density_map[0, label_[:, 1], label_[:, 0]] = 1.0
if sigma is not None:
assert sigma > 0, f"sigma should be positive if not None, got {sigma}."
density_map = torch.from_numpy(gaussian_filter(density_map, sigma=sigma))
return density_map
def collate_fn(batch: List[Tensor]) -> Tuple[Tensor, List[Tensor], Tensor]:
batch = list(zip(*batch))
images = batch[0]
assert len(images[0].shape) == 4, f"images should be a 4D tensor, got {images[0].shape}."
if len(batch) == 4: # image, label, density_map, image_name
images = torch.cat(images, 0)
points = batch[1] # list of lists of tensors, flatten it
points = [p for points_ in points for p in points_]
densities = torch.cat(batch[2], 0)
image_names = batch[3] # list of lists of strings, flatten it
image_names = [name for names_ in image_names for name in names_]
return images, points, densities, image_names
elif len(batch) == 3: # image, label, density_map
images = torch.cat(images, 0)
points = batch[1]
points = [p for points_ in points for p in points_]
densities = torch.cat(batch[2], 0)
return images, points, densities
elif len(batch) == 2: # image, image_name. NWPU test dataset
images = torch.cat(images, 0)
image_names = batch[1]
image_names = [name for names_ in image_names for name in names_]
return images, image_names
else:
images = torch.cat(images, 0)
return images