File size: 2,358 Bytes
18fde75 0a851d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
datasets:
- YYama0/CT-RATE-JPN
base_model:
- alabnii/jmedroberta-base-manbyo-wordpiece
---
# jmedroberta-base-manbyo-wordpiece
**jmedroberta-base-manbyo-wordpiece** is a Japanese RoBERTa-based model optimized for medical text understanding. It has been fine-tuned on **CT-RATE-JPN**, a large-scale dataset of Japanese chest CT reports, for **multi-label classification** of 18 common thoracic CT findings.
The model leverages the medical-domain vocabulary coverage of JMedRoBERTa and achieves strong and stable performance on Japanese radiology reports.
---
## Model Overview
* **Base model:** `alabnii/jmedroberta-base-manbyo-wordpiece`
* **Task:** Multi-label classification (18 abnormal findings)
* **Training data:** CT-RATE-JPN (Japanese translations of CT-RATE reports)
* **Input:** Japanese radiology reports
* **Output:** Probabilities (0–1) for each finding
---
## Usage
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
model_name = "alabnii/jmedroberta-base-manbyo-wordpiece"
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=18,
problem_type="multi_label_classification"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def infer(texts):
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
return torch.sigmoid(logits)
texts = ["両肺に淡い浸潤影を認めます。"]
probs = infer(texts)
```
---
## License
* Trained on **CT-RATE-JPN**, released under **CC BY-NC-SA**
* Model weights and outputs are for **non-commercial research use only**
---
## Citation
Please cite the following when using this model or the dataset:
```
@misc{yamagishi2024ctrep,
title={Development of a Large-scale Dataset of Chest Computed Tomography Reports in Japanese and a High-performance Finding Classification Model},
author={Yosuke Yamagishi et al.},
year={2024},
eprint={2412.15907},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{yamagishi2025modernber,
title={ModernBERT is More Efficient than Conventional BERT for Chest CT Findings Classification in Japanese Radiology Reports},
author={Yosuke Yamagishi et al.},
year={2025},
eprint={2503.05060},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|