Add/update the quantized ONNX model files and README.md for Transformers.js v3
Browse files## Applied Quantizations
### β
Based on `model.onnx` *with* slimming
β³ β `int8`: `model_int8.onnx` (added but JS-based E2E test failed)
```
/home/ubuntu/src/tjsmigration/node_modules/.pnpm/[email protected]/node_modules/onnxruntime-node/dist/backend.js:25
__classPrivateFieldGet(this, _OnnxruntimeSessionHandler_inferenceSession, "f").loadModel(pathOrBuffer, options);
^
Error: Could not find an implementation for ConvInteger(10) node with name '/swin/embeddings/patch_embeddings/projection/Conv_quant'
at new OnnxruntimeSessionHandler (/home/ubuntu/src/tjsmigration/node_modules/.pnpm/[email protected]/node_modules/onnxruntime-node/dist/backend.js:25:92)
at Immediate.<anonymous> (/home/ubuntu/src/tjsmigration/node_modules/.pnpm/[email protected]/node_modules/onnxruntime-node/dist/backend.js:67:29)
at process.processImmediate (node:internal/timers:485:21)
Node.js v22.16.0
```
β³ β
`uint8`: `model_uint8.onnx` (added)
β³ β
`q4`: `model_q4.onnx` (added)
β³ β
`q4f16`: `model_q4f16.onnx` (added)
β³ β
`bnb4`: `model_bnb4.onnx` (added)
- README.md +17 -0
- onnx/model_bnb4.onnx +3 -0
- onnx/model_q4.onnx +3 -0
- onnx/model_q4f16.onnx +3 -0
- onnx/model_uint8.onnx +3 -0
|
@@ -5,4 +5,21 @@ library_name: transformers.js
|
|
| 5 |
|
| 6 |
https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k with ONNX weights to be compatible with Transformers.js.
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [π€ Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
|
| 5 |
|
| 6 |
https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k with ONNX weights to be compatible with Transformers.js.
|
| 7 |
|
| 8 |
+
## Usage (Transformers.js)
|
| 9 |
+
|
| 10 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
| 11 |
+
```bash
|
| 12 |
+
npm i @huggingface/transformers
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
**Example:** Classify an image.
|
| 16 |
+
|
| 17 |
+
```js
|
| 18 |
+
import { pipeline } from '@huggingface/transformers';
|
| 19 |
+
|
| 20 |
+
const classifier = await pipeline('image-classification', 'Xenova/swin-large-patch4-window12-384-in22k');
|
| 21 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
|
| 22 |
+
const output = await classifier(url);
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [π€ Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13c80f5cfb99b870ca2876f3edc221b3068d9ba01f7f4744d6ad1113a3fef8bb
|
| 3 |
+
size 293372055
|
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6574efcde6f1a482aea66396f2e6c5db626c2195230a2d96bdb27fa6981408f
|
| 3 |
+
size 305536096
|
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e1cb03ad058d3f21a6f18f1180e19eac852d0c36f38b8b3c8b2c6bf5e2473928
|
| 3 |
+
size 202324767
|
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5eb3e0f65e4304e87f87e61a18767268f17cf3beeb4a0663d7e2abaea8eaf9e9
|
| 3 |
+
size 278041344
|