update pretrain
Browse files- README.md +33 -18
- pytorch_model.bin +1 -1
README.md
CHANGED
|
@@ -3,12 +3,11 @@
|
|
| 3 |
1. [Introduction](#introduction)
|
| 4 |
2. [Pretrain model](#models)
|
| 5 |
3. [Using SimeCSE_Vietnamese with `sentences-transformers`](#sentences-transformers)
|
| 6 |
-
|
| 7 |
-
|
| 8 |
4. [Using SimeCSE_Vietnamese with `transformers`](#transformers)
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
# <a name="introduction"></a> SimeCSE_Vietnamese: Simple Contrastive Learning of Sentence Embeddings with Vietnamese
|
| 13 |
|
| 14 |
Pre-trained SimeCSE_Vietnamese models are the state-of-the-art of Sentence Embeddings with Vietnamese :
|
|
@@ -20,7 +19,7 @@ Pre-trained SimeCSE_Vietnamese models are the state-of-the-art of Sentence Embed
|
|
| 20 |
## Pre-trained models <a name="models"></a>
|
| 21 |
|
| 22 |
|
| 23 |
-
Model | #params | Arch
|
| 24 |
---|---|---
|
| 25 |
[`VoVanPhuc/sup-SimCSE-VietNamese-phobert-base`](https://huggingface.co/VoVanPhuc/sup-SimCSE-VietNamese-phobert-base) | 135M | base
|
| 26 |
[`VoVanPhuc/unsup-SimCSE-VietNamese-phobert-base`](https://huggingface.co/VoVanPhuc/unsup-SimCSE-VietNamese-phobert-base) | 135M | base
|
|
@@ -31,13 +30,19 @@ Model | #params | Arch.\\t
|
|
| 31 |
|
| 32 |
### Installation <a name="install1"></a>
|
| 33 |
- Install `sentence-transformers`:
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
### Example usage <a name="usage1"></a>
|
| 38 |
|
| 39 |
```python
|
| 40 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
| 41 |
model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
|
| 42 |
|
| 43 |
sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
@@ -52,6 +57,7 @@ sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
| 52 |
'Bắn chết người trong cuộc rượt đuổi trên sông.'
|
| 53 |
]
|
| 54 |
|
|
|
|
| 55 |
embeddings = model.encode(sentences)
|
| 56 |
```
|
| 57 |
|
|
@@ -59,16 +65,22 @@ embeddings = model.encode(sentences)
|
|
| 59 |
|
| 60 |
### Installation <a name="install2"></a>
|
| 61 |
- Install `transformers`:
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
### Example usage <a name="usage2"></a>
|
| 66 |
|
| 67 |
```python
|
| 68 |
import torch
|
| 69 |
from transformers import AutoModel, AutoTokenizer
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
model = AutoModel.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base")
|
| 73 |
|
| 74 |
sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
@@ -82,7 +94,10 @@ sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
| 82 |
'Chủ ki-ốt bị đâm chết trong chợ đầu mối lớn nhất Thanh Hoá.',
|
| 83 |
'Bắn chết người trong cuộc rượt đuổi trên sông.'
|
| 84 |
]
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
with torch.no_grad():
|
| 88 |
embeddings = model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
|
|
@@ -94,12 +109,12 @@ with torch.no_grad():
|
|
| 94 |
## Citation
|
| 95 |
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
@inproceedings{phobert,
|
| 105 |
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
|
|
|
|
| 3 |
1. [Introduction](#introduction)
|
| 4 |
2. [Pretrain model](#models)
|
| 5 |
3. [Using SimeCSE_Vietnamese with `sentences-transformers`](#sentences-transformers)
|
| 6 |
+
- [Installation](#install1)
|
| 7 |
+
- [Example usage](#usage1)
|
| 8 |
4. [Using SimeCSE_Vietnamese with `transformers`](#transformers)
|
| 9 |
+
- [Installation](#install2)
|
| 10 |
+
- [Example usage](#usage2)
|
|
|
|
| 11 |
# <a name="introduction"></a> SimeCSE_Vietnamese: Simple Contrastive Learning of Sentence Embeddings with Vietnamese
|
| 12 |
|
| 13 |
Pre-trained SimeCSE_Vietnamese models are the state-of-the-art of Sentence Embeddings with Vietnamese :
|
|
|
|
| 19 |
## Pre-trained models <a name="models"></a>
|
| 20 |
|
| 21 |
|
| 22 |
+
Model | #params | Arch.
|
| 23 |
---|---|---
|
| 24 |
[`VoVanPhuc/sup-SimCSE-VietNamese-phobert-base`](https://huggingface.co/VoVanPhuc/sup-SimCSE-VietNamese-phobert-base) | 135M | base
|
| 25 |
[`VoVanPhuc/unsup-SimCSE-VietNamese-phobert-base`](https://huggingface.co/VoVanPhuc/unsup-SimCSE-VietNamese-phobert-base) | 135M | base
|
|
|
|
| 30 |
|
| 31 |
### Installation <a name="install1"></a>
|
| 32 |
- Install `sentence-transformers`:
|
| 33 |
+
|
| 34 |
+
- `pip install -U sentence-transformers`
|
| 35 |
+
|
| 36 |
+
- Install `pyvi` to word segment:
|
| 37 |
+
|
| 38 |
+
- `pip install pyvi`
|
| 39 |
|
| 40 |
### Example usage <a name="usage1"></a>
|
| 41 |
|
| 42 |
```python
|
| 43 |
from sentence_transformers import SentenceTransformer
|
| 44 |
+
from pyvi.ViTokenizer import tokenize
|
| 45 |
+
|
| 46 |
model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base')
|
| 47 |
|
| 48 |
sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
|
|
| 57 |
'Bắn chết người trong cuộc rượt đuổi trên sông.'
|
| 58 |
]
|
| 59 |
|
| 60 |
+
sentences = [tokenize(sentence) for sentence in sentences]
|
| 61 |
embeddings = model.encode(sentences)
|
| 62 |
```
|
| 63 |
|
|
|
|
| 65 |
|
| 66 |
### Installation <a name="install2"></a>
|
| 67 |
- Install `transformers`:
|
| 68 |
+
|
| 69 |
+
- `pip install -U transformers`
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
- Install `pyvi` to word segment:
|
| 73 |
+
|
| 74 |
+
- `pip install pyvi`
|
| 75 |
|
| 76 |
### Example usage <a name="usage2"></a>
|
| 77 |
|
| 78 |
```python
|
| 79 |
import torch
|
| 80 |
from transformers import AutoModel, AutoTokenizer
|
| 81 |
+
from pyvi.ViTokenizer import tokenize
|
| 82 |
|
| 83 |
+
PhobertTokenizer = AutoTokenizer.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base")
|
| 84 |
model = AutoModel.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base")
|
| 85 |
|
| 86 |
sentences = ['Kẻ đánh bom đinh tồi tệ nhất nước Anh.',
|
|
|
|
| 94 |
'Chủ ki-ốt bị đâm chết trong chợ đầu mối lớn nhất Thanh Hoá.',
|
| 95 |
'Bắn chết người trong cuộc rượt đuổi trên sông.'
|
| 96 |
]
|
| 97 |
+
|
| 98 |
+
sentences = [tokenize(sentence) for sentence in sentences]
|
| 99 |
+
|
| 100 |
+
inputs = PhobertTokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
|
| 101 |
|
| 102 |
with torch.no_grad():
|
| 103 |
embeddings = model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
|
|
|
|
| 109 |
## Citation
|
| 110 |
|
| 111 |
|
| 112 |
+
@article{gao2021simcse,
|
| 113 |
+
title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
|
| 114 |
+
author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
|
| 115 |
+
journal={arXiv preprint arXiv:2104.08821},
|
| 116 |
+
year={2021}
|
| 117 |
+
}
|
| 118 |
|
| 119 |
@inproceedings{phobert,
|
| 120 |
title = {{PhoBERT: Pre-trained language models for Vietnamese}},
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 542443775
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:920246a089ab078ab493cf03c42c6a6d788683d319d97a48e4dcae8eeed2220a
|
| 3 |
size 542443775
|