Create handler.py
Browse files- handler.py +81 -0
handler.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class EndpointHandler:
|
| 6 |
+
def __init__(self):
|
| 7 |
+
# Initialize model and tokenizer
|
| 8 |
+
self.tokenizer = AutoTokenizer.from_pretrained("VisitationAI/opt125-llama-visitation")
|
| 9 |
+
self.model = AutoModelForCausalLM.from_pretrained("VisitationAI/opt125-llama-visitation")
|
| 10 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
self.model.to(self.device)
|
| 12 |
+
|
| 13 |
+
def __call__(self, data):
|
| 14 |
+
"""
|
| 15 |
+
Args:
|
| 16 |
+
data: JSON input with structure:
|
| 17 |
+
{
|
| 18 |
+
"inputs": "your text prompt here",
|
| 19 |
+
"parameters": {
|
| 20 |
+
"max_new_tokens": 50,
|
| 21 |
+
"temperature": 0.7,
|
| 22 |
+
"top_p": 0.9,
|
| 23 |
+
"do_sample": true
|
| 24 |
+
}
|
| 25 |
+
}
|
| 26 |
+
"""
|
| 27 |
+
# Get input text and parameters
|
| 28 |
+
inputs = data.pop("inputs", data)
|
| 29 |
+
parameters = data.pop("parameters", {})
|
| 30 |
+
|
| 31 |
+
# Default generation parameters
|
| 32 |
+
generation_config = {
|
| 33 |
+
"max_new_tokens": parameters.get("max_new_tokens", 50),
|
| 34 |
+
"temperature": parameters.get("temperature", 0.7),
|
| 35 |
+
"top_p": parameters.get("top_p", 0.9),
|
| 36 |
+
"do_sample": parameters.get("do_sample", True),
|
| 37 |
+
"pad_token_id": self.tokenizer.eos_token_id,
|
| 38 |
+
"num_return_sequences": parameters.get("num_return_sequences", 1)
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
# Tokenize
|
| 42 |
+
inputs = self.tokenizer(
|
| 43 |
+
inputs,
|
| 44 |
+
return_tensors="pt",
|
| 45 |
+
padding=True,
|
| 46 |
+
truncation=True,
|
| 47 |
+
max_length=512
|
| 48 |
+
).to(self.device)
|
| 49 |
+
|
| 50 |
+
# Generate text
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
generated_ids = self.model.generate(
|
| 53 |
+
inputs.input_ids,
|
| 54 |
+
attention_mask=inputs.attention_mask,
|
| 55 |
+
**generation_config
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Decode and return generated text
|
| 59 |
+
generated_texts = self.tokenizer.batch_decode(
|
| 60 |
+
generated_ids,
|
| 61 |
+
skip_special_tokens=True
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
return {
|
| 65 |
+
"generated_text": generated_texts[0], # Return first generation if multiple
|
| 66 |
+
"all_generations": generated_texts # All generations if num_return_sequences > 1
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
def preprocess(self, data):
|
| 70 |
+
"""
|
| 71 |
+
Handle different input formats
|
| 72 |
+
"""
|
| 73 |
+
if isinstance(data, str):
|
| 74 |
+
return {"inputs": data}
|
| 75 |
+
return data
|
| 76 |
+
|
| 77 |
+
def postprocess(self, data):
|
| 78 |
+
"""
|
| 79 |
+
Clean up output if needed
|
| 80 |
+
"""
|
| 81 |
+
return data
|