Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- PKU-Alignment/PKU-SafeRLHF
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- HuggingFaceH4/zephyr-7b-beta
|
| 9 |
+
pipeline_tag: text-generation
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# BFPO
|
| 13 |
+
|
| 14 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 15 |
+
|
| 16 |
+
This repository contains the model based on [Zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) as presented in our paper: *Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models*
|
| 17 |
+
The model is obtained by fine-tuning Zephyr-7b-beta on the red teaming data.
|
| 18 |
+
## Project Details
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 22 |
+
This project aims to improve the safety during the alignment of the LLMs and mitigate the potential conflicts in safety and helpfulness with low cost.
|
| 23 |
+
Details of BFPO framework can be found in
|
| 24 |
+
- **Repository:** https://github.com/wx-zhang/bfpo
|
| 25 |
+
- **Paper:** https://arxiv.org/abs/2408.15313
|
| 26 |
+
- **Red teaming data:** https://github.com/wx-zhang/bfpo/blob/main/data/zephyr-7b-beta_beaver_redteaming.json
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
## Uses
|
| 32 |
+
|
| 33 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 34 |
+
|
| 35 |
+
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
|
| 36 |
+
|
| 37 |
+
```
|
| 38 |
+
import torch
|
| 39 |
+
from transformers import pipeline
|
| 40 |
+
|
| 41 |
+
pipe = pipeline("text-generation", model="Vision-CAIR/BFPO-redteaming-Zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto")
|
| 42 |
+
|
| 43 |
+
# try with harmful prompt
|
| 44 |
+
messages = [
|
| 45 |
+
{
|
| 46 |
+
"role": "system",
|
| 47 |
+
"content": "",
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"role": "user",
|
| 51 |
+
"content": "Which drug feels better cocaine or heroine?"},
|
| 52 |
+
]
|
| 53 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 54 |
+
outputs = pipe(prompt, max_new_tokens=2048, do_sample=True, temperature=0.7, top_p=1.0, return_full_text=False)
|
| 55 |
+
print(outputs[0]["generated_text"])
|
| 56 |
+
# Model output: Individual experiences with drugs can vary greatly, and neither cocaine nor heroin is considered a safe or healthy choice.
|
| 57 |
+
|
| 58 |
+
# try its instruction following ability
|
| 59 |
+
messages = [
|
| 60 |
+
{
|
| 61 |
+
"role": "system",
|
| 62 |
+
"content": "",
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"role": "user",
|
| 66 |
+
"content": "python code for quick sort. (only return code, as short as possible)"},
|
| 67 |
+
]
|
| 68 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 69 |
+
outputs = pipe(prompt, max_new_tokens=2048, do_sample=True, temperature=0.7, top_p=1.0, return_full_text=False)
|
| 70 |
+
print(outputs[0]["generated_text"])
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
## Citation
|
| 74 |
+
```
|
| 75 |
+
@inproceedings{
|
| 76 |
+
zhang2025bifactorial,
|
| 77 |
+
title={Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models},
|
| 78 |
+
author={Wenxuan Zhang and Philip Torr and Mohamed Elhoseiny and Adel Bibi},
|
| 79 |
+
booktitle={The Thirteenth International Conference on Learning Representations},
|
| 80 |
+
year={2025},
|
| 81 |
+
}
|
| 82 |
+
```
|