File size: 9,453 Bytes
0b45a34 7fae2e8 4f17331 7fae2e8 d8d71bc 7fae2e8 2812e48 f33e5d0 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 4f17331 7fae2e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
---
tags:
- moe
- minimax
- bfloat16
- sglang
- gguf
license: mit
datasets:
- nick007x/github-code-2025
- tatsu-lab/alpaca
base_model:
- MiniMaxAI/MiniMax-M2
---

# VibeStudio/MiniMax-M2-THRIFT-55-v1
**Targeted Reduction for Inference and Fine-Tuning — ~55% Expert Pruned**
A lean, efficiency-first variant of MiniMax-M2 designed to maximize **latency, throughput, and VRAM savings** for local, on-prem, and edge deployments.
> **Note:** `MiniMax-M2-THRIFT-55` and `MiniMax-M2-THRIFT-55-v1` refer to the same model variant.
---
## Why it’s useful
* **Lower latency:** Fast, responsive interactions for interactive apps and tools.
* **Smaller memory footprint:** Fits tighter VRAM budgets and increases node density.
* **Higher throughput:** Serve more concurrent users on the same hardware.
* **Deployment-friendly:** Smooth drop-in via SGLang with OpenAI-compatible API.
* **Adaptable:** Plays well with light fine-tuning to match domain and style.
## Intended use
* Local/air-gapped assistants and dev tools
* Cost-sensitive batches and realtime services
* Edge and on-prem deployments prioritizing efficiency
---
## How Our Approach Works
> **Active research in progress** — we continue to iterate and expand ablations.
* **Teacher–student setup:** Start with **MiniMax-M2** as teacher and a copy as student.
* **Gradual expert pruning:** Remove **≈5% experts per stage** over **~11 stages** (≈**55% total**), guided by importance scores with a lightweight **Leave-One-Expert-Out** check to retain rare-but-important experts.
* **Distill after each prune:** Retrain the student to imitate the teacher on
* **Outputs** (token probability distributions),
* **Hidden states**, and
* **Router behavior** over the **surviving experts**.
---
**Run AI Coding Agents Fully Locally (Mac Studio, DGX Spark, AMD AI Max)**
https://github.com/latent-variable/minimax-agent-guide
# Model Report — THRIFT-55-v1
**Evaluation windows:** Nov 7–9, 2025 & Nov 24–25, 2025
**Last updated:** Nov 26, 2025
**Eval status:** 6/8 benchmarks complete (**75%**) – WildBench & SWE-Bench pending.
---
## 📊 Results to date
### 1) Multiple Choice Q&A (lm-eval)
**MMLU (overall and bands)**
| Metric | Score |
| :----------- | -----: |
| MMLU Overall | 60.45% |
| Humanities | 51.65% |
| STEM | 59.44% |
| Social Sci. | 71.66% |
| Other | 63.69% |
**Selected Tasks (lm-eval)**
| Task | Score |
| :----------------------- | -----: |
| arc_challenge (acc_norm) | 50.77% |
| arc_easy | 74.07% |
| boolq | 75.02% |
| hellaswag (acc_norm) | 64.99% |
| mmlu | 60.45% |
| openbookqa (acc_norm) | 38.20% |
| rte | 68.23% |
| winogrande | 64.64% |
| **Average (8 tasks)** | **62.05%** |
---
### 2) Code Generation (EvalPlus)
**MBPP (Python, 378 problems)**
| Metric | Score | Problems Solved |
| :------ | -----: | --------------: |
| MBPP | 42.1% | 159 / 378 |
| MBPP+ | 37.3% | 141 / 378 |
| Average | 39.7% | – |
**HumanEval (164 problems)**
| Metric | Score | Problems Solved |
| :--------- | -----: | --------------: |
| HumanEval | 40.2% | 66 / 164 |
| HumanEval+ | 39.6% | 65 / 164 |
| Average | 39.9% | – |
---
### 3) LiveCodeBench (Live Coding)
| Metric | Value |
| :------- | ---------: |
| pass@1 | 16.48% |
| Problems | 182 |
Configuration: temperature **0.2** (greedy-ish decoding).
---
### 4) Math Reasoning
**GSM8K (Grade School Math, 1,319 problems)**
| Metric | Score | Problems Solved |
|--------|--------:|----------------:|
| GSM8K | 84.91% | 1,120 / 1,319 |
**MATH-500 (Competition Math)**
| Metric | Score |
|----------|--------:|
| Overall | 90.8% |
| Level 1 | 97.67% |
| Level 2 | 95.56% |
| Level 3 | 89.52% |
| Level 4 | 90.62% |
| Level 5 | 86.57% |
---
```
---
## SGLang Deployment (Python)
Use a fresh virtual environment (e.g., `venv`, `conda`, or `uv`).
```shell
git clone -b v0.5.4.post1 https://github.com/sgl-project/sglang.git
cd sglang
pip install --upgrade pip
pip install -e "python"
```
**4-GPU launch**
```shell
python -m sglang.launch_server \
--model-path VibeStudio/MiniMax-M2-THRIFT-55-v1 \
--tp-size 4 \
--tool-call-parser minimax-m2 \
--reasoning-parser minimax-append-think \
--host 0.0.0.0 \
--trust-remote-code \
--port 8000 \
--mem-fraction-static 0.85
```
**8-GPU launch**
```shell
python -m sglang.launch_server \
--model-path VibeStudio/MiniMax-M2-THRIFT-55-v1 \
--tp-size 8 \
--ep-size 8 \
--tool-call-parser minimax-m2 \
--reasoning-parser minimax-append-think \
--host 0.0.0.0 \
--trust-remote-code \
--port 8000 \
--mem-fraction-static 0.85
```
### Quick Test (OpenAI-compatible)
```shell
curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "VibeStudio/MiniMax-M2-THRIFT-55-v1",
"messages": [
{"role":"system","content":[{"type":"text","text":"You are a helpful assistant."}]},
{"role":"user","content":[{"type":"text","text":"Write a Python function to reverse a linked list."}]}
]
}'
```
---
---
## License
Derived from MiniMax-M2 and distributed under the **MIT License** [http://github.com/MiniMax-AI/MiniMax-M2/blob/main/LICENSE](http://github.com/MiniMax-AI/MiniMax-M2/blob/main/LICENSE)
---
## Credits
Model conversion and Transformers glue by **@Qubitum** at **ModelCloud**.
## References (BibTeX)
```
@article{cai2025thinking,
title = {Thinking with DistilQwen: A Tale of Four Distilled Reasoning and Reward Model Series},
author = {Cai, Wenrui and Wang, Chengyu and Yan, Junbing and Huang, Jun and Fang, Xiangzhong},
journal = {arXiv preprint arXiv:2511.01354},
year = {2025},
eprinttype = {arXiv},
eprint = {2511.01354},
primaryclass = {cs.CL}
}
@misc{lasby-reap,
title = {{REAP the Experts: Why Pruning Prevails for One-Shot MoE compression}},
author = {Lasby, Mike and Lazarevich, Ivan and Sinnadurai, Nish and Lie, Sean and Ioannou, Yani and Thangarasa, Vithursan},
year = {2025},
publisher = {arXiv},
note = {arXiv:2510.13999v1 [cs]},
url = {https://arxiv.org/abs/2510.13999v1}
}
@article{yang2025wanda++,
title = {Wanda++: Pruning Large Language Models via Regional Gradients},
author = {Yang, Yifan and Zhen, Kai and Ganesh, Bhavana and Galstyan, Aram and Huybrechts, Goeric and Müller, Markus and Kübler, Jonas M. and Swaminathan, Rupak Vignesh and Mouchtaris, Athanasios and Bodapati, Sravan Babu and Susanj, Nathan and Zhang, Zheng and FitzGerald, Jack and Kumar, Abhishek},
journal = {arXiv preprint arXiv:2503.04992},
year = {2025},
eprinttype = {arXiv},
eprint = {2503.04992},
primaryclass = {cs.CL}
}
@article{li2025tyr,
title = {Týr-the-Pruner: Structural Pruning LLMs via Global Sparsity Distribution Optimization},
author = {Li, G. and Xu, Yixing and Li, Zeping and Liu, Ji and Yin, Xuanwu and Li, Dong and Barsoum, Emad},
journal = {arXiv preprint arXiv:2503.09657},
year = {2025},
eprinttype = {arXiv},
eprint = {2503.09657},
primaryclass = {cs.CL}
}
@article{xia2023sheared,
title = {Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning},
author = {Xia, Mengzhou and Gao, Tianyu and Zeng, Zhiyuan and Chen, Danqi},
journal = {arXiv preprint arXiv:2310.06694},
year = {2023},
eprinttype = {arXiv},
eprint = {2310.06694},
primaryclass = {cs.CL}
}
@article{ma2023llmpruner,
title = {LLM-Pruner: On the Structural Pruning of Large Language Models},
author = {Ma, Xinyin and Fang, Gongfan and Wang, Xinchao},
journal = {arXiv preprint arXiv:2305.11627},
year = {2023},
eprinttype = {arXiv},
eprint = {2305.11627},
primaryclass = {cs.CL}
}
@article{yang2023wanda,
title = {Wanda: Pruning by Weights and Activation-based Discriminant Analysis},
author = {Yang, Yifan and Ganesh, Bhavana and Galstyan, Aram and Huybrechts, Goeric and Müller, Markus and Kübler, Jonas M. and Swaminathan, Rupak Vignesh and Mouchtaris, Athanasios and Bodapati, Sravan Babu and Susanj, Nathan and Zhang, Zheng and FitzGerald, Jack and Kumar, Abhishek},
journal = {arXiv preprint arXiv:2306.11695},
year = {2023},
eprinttype = {arXiv},
eprint = {2306.11695},
primaryclass = {cs.CL}
}
@article{frantar2023sparsegpt,
title = {SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot},
author = {Frantar, Elias and Alistarh, Dan},
journal = {arXiv preprint arXiv:2301.00774},
year = {2023},
eprinttype = {arXiv},
eprint = {2301.00774},
primaryclass = {cs.CL}
}
@article{dettmers2023qlora,
title = {QLoRA: Efficient Finetuning of Quantized LLMs},
author = {Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
journal = {arXiv preprint arXiv:2307.02973},
year = {2023},
eprinttype = {arXiv},
eprint = {2307.02973},
primaryclass = {cs.CL}
}
```
|