File size: 9,453 Bytes
0b45a34
 
 
 
 
 
 
 
 
 
 
 
 
 
7fae2e8
 
 
 
 
 
 
 
4f17331
7fae2e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d71bc
7fae2e8
 
 
 
 
 
 
 
 
 
 
2812e48
 
f33e5d0
7fae2e8
 
 
4f17331
 
 
 
 
7fae2e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f17331
7fae2e8
 
 
 
 
 
 
 
 
 
 
4f17331
 
 
7fae2e8
 
 
 
 
4f17331
 
 
 
 
7fae2e8
 
 
4f17331
 
 
 
 
 
 
7fae2e8
 
 
 
 
 
 
 
4f17331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fae2e8
 
 
 
 
4f17331
7fae2e8
4f17331
7fae2e8
 
 
 
 
 
 
 
 
4f17331
7fae2e8
 
 
 
 
 
 
 
 
 
 
 
 
4f17331
7fae2e8
 
 
 
 
 
 
 
 
 
 
 
 
 
4f17331
7fae2e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f17331
7fae2e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
---
tags:
- moe
- minimax
- bfloat16
- sglang
- gguf
license: mit
datasets:
- nick007x/github-code-2025
- tatsu-lab/alpaca
base_model:
- MiniMaxAI/MiniMax-M2
---
![Screenshot](https://huggingface.co/VibeStudio/MiniMax-M2-THRIFT/resolve/main/vibe_processed_by_imagy.png)

# VibeStudio/MiniMax-M2-THRIFT-55-v1

**Targeted Reduction for Inference and Fine-Tuning — ~55% Expert Pruned**

A lean, efficiency-first variant of MiniMax-M2 designed to maximize **latency, throughput, and VRAM savings** for local, on-prem, and edge deployments.

> **Note:** `MiniMax-M2-THRIFT-55` and `MiniMax-M2-THRIFT-55-v1` refer to the same model variant.

---

## Why it’s useful

* **Lower latency:** Fast, responsive interactions for interactive apps and tools.
* **Smaller memory footprint:** Fits tighter VRAM budgets and increases node density.
* **Higher throughput:** Serve more concurrent users on the same hardware.
* **Deployment-friendly:** Smooth drop-in via SGLang with OpenAI-compatible API.
* **Adaptable:** Plays well with light fine-tuning to match domain and style.

## Intended use

* Local/air-gapped assistants and dev tools
* Cost-sensitive batches and realtime services
* Edge and on-prem deployments prioritizing efficiency

---

## How Our Approach Works

> **Active research in progress** — we continue to iterate and expand ablations.

* **Teacher–student setup:** Start with **MiniMax-M2** as teacher and a copy as student.
* **Gradual expert pruning:** Remove **≈5% experts per stage** over **~11 stages** (≈**55% total**), guided by importance scores with a lightweight **Leave-One-Expert-Out** check to retain rare-but-important experts.
* **Distill after each prune:** Retrain the student to imitate the teacher on
  * **Outputs** (token probability distributions),
  * **Hidden states**, and
  * **Router behavior** over the **surviving experts**.

---

**Run AI Coding Agents Fully Locally (Mac Studio, DGX Spark, AMD AI Max)**
https://github.com/latent-variable/minimax-agent-guide

# Model Report — THRIFT-55-v1

**Evaluation windows:** Nov 7–9, 2025 & Nov 24–25, 2025  
**Last updated:** Nov 26, 2025  
**Eval status:** 6/8 benchmarks complete (**75%**) – WildBench & SWE-Bench pending.

---

## 📊 Results to date

### 1) Multiple Choice Q&A (lm-eval)

**MMLU (overall and bands)**

| Metric       |  Score |
| :----------- | -----: |
| MMLU Overall | 60.45% |
| Humanities   | 51.65% |
| STEM         | 59.44% |
| Social Sci.  | 71.66% |
| Other        | 63.69% |

**Selected Tasks (lm-eval)**

| Task                     |  Score |
| :----------------------- | -----: |
| arc_challenge (acc_norm) | 50.77% |
| arc_easy                 | 74.07% |
| boolq                    | 75.02% |
| hellaswag (acc_norm)     | 64.99% |
| mmlu                     | 60.45% |
| openbookqa (acc_norm)    | 38.20% |
| rte                      | 68.23% |
| winogrande               | 64.64% |
| **Average (8 tasks)**    | **62.05%** |

---

### 2) Code Generation (EvalPlus)

**MBPP (Python, 378 problems)**

| Metric  | Score  | Problems Solved |
| :------ | -----: | --------------: |
| MBPP    | 42.1%  | 159 / 378       |
| MBPP+   | 37.3%  | 141 / 378       |
| Average | 39.7%  |        –        |

**HumanEval (164 problems)**

| Metric     | Score  | Problems Solved |
| :--------- | -----: | --------------: |
| HumanEval  | 40.2%  | 66 / 164        |
| HumanEval+ | 39.6%  | 65 / 164        |
| Average    | 39.9%  |        –        |

---

### 3) LiveCodeBench (Live Coding)

| Metric   |      Value |
| :------- | ---------: |
| pass@1   |     16.48% |
| Problems |        182 |

Configuration: temperature **0.2** (greedy-ish decoding).

---

### 4) Math Reasoning

**GSM8K (Grade School Math, 1,319 problems)**

| Metric | Score   | Problems Solved |
|--------|--------:|----------------:|
| GSM8K  | 84.91% | 1,120 / 1,319   |

**MATH-500 (Competition Math)**

| Metric   | Score   |
|----------|--------:|
| Overall  | 90.8%   |
| Level 1  | 97.67%  |
| Level 2  | 95.56%  |
| Level 3  | 89.52%  |
| Level 4  | 90.62%  |
| Level 5  | 86.57%  |

---
```

---

## SGLang Deployment (Python)

Use a fresh virtual environment (e.g., `venv`, `conda`, or `uv`).

```shell
git clone -b v0.5.4.post1 https://github.com/sgl-project/sglang.git
cd sglang

pip install --upgrade pip
pip install -e "python"
```

**4-GPU launch**

```shell
python -m sglang.launch_server \
  --model-path VibeStudio/MiniMax-M2-THRIFT-55-v1 \
  --tp-size 4 \
  --tool-call-parser minimax-m2 \
  --reasoning-parser minimax-append-think \
  --host 0.0.0.0 \
  --trust-remote-code \
  --port 8000 \
  --mem-fraction-static 0.85
```

**8-GPU launch**

```shell
python -m sglang.launch_server \
  --model-path VibeStudio/MiniMax-M2-THRIFT-55-v1 \
  --tp-size 8 \
  --ep-size 8 \
  --tool-call-parser minimax-m2 \
  --reasoning-parser minimax-append-think \
  --host 0.0.0.0 \
  --trust-remote-code \
  --port 8000 \
  --mem-fraction-static 0.85
```

### Quick Test (OpenAI-compatible)

```shell
curl http://localhost:8000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "VibeStudio/MiniMax-M2-THRIFT-55-v1",
    "messages": [
      {"role":"system","content":[{"type":"text","text":"You are a helpful assistant."}]},
      {"role":"user","content":[{"type":"text","text":"Write a Python function to reverse a linked list."}]}
    ]
  }'
```

---

---

## License

Derived from MiniMax-M2 and distributed under the **MIT License** [http://github.com/MiniMax-AI/MiniMax-M2/blob/main/LICENSE](http://github.com/MiniMax-AI/MiniMax-M2/blob/main/LICENSE)

---

## Credits

Model conversion and Transformers glue by **@Qubitum** at **ModelCloud**.

## References (BibTeX)

```
@article{cai2025thinking,
  title        = {Thinking with DistilQwen: A Tale of Four Distilled Reasoning and Reward Model Series},
  author       = {Cai, Wenrui and Wang, Chengyu and Yan, Junbing and Huang, Jun and Fang, Xiangzhong},
  journal      = {arXiv preprint arXiv:2511.01354},
  year         = {2025},
  eprinttype   = {arXiv},
  eprint       = {2511.01354},
  primaryclass = {cs.CL}
}

@misc{lasby-reap,
  title       = {{REAP the Experts: Why Pruning Prevails for One-Shot MoE compression}},
  author      = {Lasby, Mike and Lazarevich, Ivan and Sinnadurai, Nish and Lie, Sean and Ioannou, Yani and Thangarasa, Vithursan},
  year        = {2025},
  publisher   = {arXiv},
  note        = {arXiv:2510.13999v1 [cs]},
  url         = {https://arxiv.org/abs/2510.13999v1}
}

@article{yang2025wanda++,
  title        = {Wanda++: Pruning Large Language Models via Regional Gradients},
  author       = {Yang, Yifan and Zhen, Kai and Ganesh, Bhavana and Galstyan, Aram and Huybrechts, Goeric and Müller, Markus and Kübler, Jonas M. and Swaminathan, Rupak Vignesh and Mouchtaris, Athanasios and Bodapati, Sravan Babu and Susanj, Nathan and Zhang, Zheng and FitzGerald, Jack and Kumar, Abhishek},
  journal      = {arXiv preprint arXiv:2503.04992},
  year         = {2025},
  eprinttype   = {arXiv},
  eprint       = {2503.04992},
  primaryclass = {cs.CL}
}

@article{li2025tyr,
  title        = {Týr-the-Pruner: Structural Pruning LLMs via Global Sparsity Distribution Optimization},
  author       = {Li, G. and Xu, Yixing and Li, Zeping and Liu, Ji and Yin, Xuanwu and Li, Dong and Barsoum, Emad},
  journal      = {arXiv preprint arXiv:2503.09657},
  year         = {2025},
  eprinttype   = {arXiv},
  eprint       = {2503.09657},
  primaryclass = {cs.CL}
}

@article{xia2023sheared,
  title        = {Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning},
  author       = {Xia, Mengzhou and Gao, Tianyu and Zeng, Zhiyuan and Chen, Danqi},
  journal      = {arXiv preprint arXiv:2310.06694},
  year         = {2023},
  eprinttype   = {arXiv},
  eprint       = {2310.06694},
  primaryclass = {cs.CL}
}

@article{ma2023llmpruner,
  title        = {LLM-Pruner: On the Structural Pruning of Large Language Models},
  author       = {Ma, Xinyin and Fang, Gongfan and Wang, Xinchao},
  journal      = {arXiv preprint arXiv:2305.11627},
  year         = {2023},
  eprinttype   = {arXiv},
  eprint       = {2305.11627},
  primaryclass = {cs.CL}
}

@article{yang2023wanda,
  title        = {Wanda: Pruning by Weights and Activation-based Discriminant Analysis},
  author       = {Yang, Yifan and Ganesh, Bhavana and Galstyan, Aram and Huybrechts, Goeric and Müller, Markus and Kübler, Jonas M. and Swaminathan, Rupak Vignesh and Mouchtaris, Athanasios and Bodapati, Sravan Babu and Susanj, Nathan and Zhang, Zheng and FitzGerald, Jack and Kumar, Abhishek},
  journal      = {arXiv preprint arXiv:2306.11695},
  year         = {2023},
  eprinttype   = {arXiv},
  eprint       = {2306.11695},
  primaryclass = {cs.CL}
}

@article{frantar2023sparsegpt,
  title        = {SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot},
  author       = {Frantar, Elias and Alistarh, Dan},
  journal      = {arXiv preprint arXiv:2301.00774},
  year         = {2023},
  eprinttype   = {arXiv},
  eprint       = {2301.00774},
  primaryclass = {cs.CL}
}

@article{dettmers2023qlora,
  title        = {QLoRA: Efficient Finetuning of Quantized LLMs},
  author       = {Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
  journal      = {arXiv preprint arXiv:2307.02973},
  year         = {2023},
  eprinttype   = {arXiv},
  eprint       = {2307.02973},
  primaryclass = {cs.CL}
}
```