Commit
·
87c8e56
1
Parent(s):
d86e03b
update model
Browse files
README.md
CHANGED
|
@@ -11,17 +11,22 @@ There are not so much resource for Chinese Longformer or long-sequence-level chi
|
|
| 11 |
您可以使用谷歌云盘或百度网盘下载我们的模型
|
| 12 |
You could get Longformer_zh from Google Drive or Baidu Yun.
|
| 13 |
|
| 14 |
-
- Google Drive: https://drive.google.com/file/d/
|
| 15 |
-
- 百度云: 链接:https://pan.baidu.com/s/
|
| 16 |
|
| 17 |
我们同样提供了Huggingface的自动下载
|
| 18 |
We also provide auto load with HuggingFace.Transformers.
|
| 19 |
```
|
| 20 |
from Longformer_zh import LongformerZhForMaksedLM
|
| 21 |
-
LongformerZhForMaksedLM.from_pretrained('
|
| 22 |
```
|
| 23 |
|
| 24 |
## 注意事项 | Notice
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
- 区别于英文原版Longformer, 中文Longformer的基础是Roberta_zh模型,其本质上属于 `Transformers.BertModel` 而非 `RobertaModel`, 因此无法使用原版代码直接加载。
|
| 26 |
- Different with origin English Longformer, Longformer_Zh is based on Roberta_zh which is a subclass of `Transformers.BertModel` not `RobertaModel`. Thus it is impossible to load it with origin code.
|
| 27 |
- 我们提供了修改后的中文Longformer文件,您可以使用其加载参数。
|
|
@@ -49,16 +54,11 @@ LongformerZhForMaksedLM.from_pretrained('Longformer_zh')
|
|
| 49 |
- 更多细节可以参考我们的预训练脚本
|
| 50 |
- For more details, please check our pretraining scripts.
|
| 51 |
|
| 52 |
-
## 更新计划 | Update Plan
|
| 53 |
-
- 我们首先会放出预训练3K-steps的模型
|
| 54 |
-
- We released our 3K-steps pretrained model.
|
| 55 |
-
- 在八月将开源训练15K-steps的模型
|
| 56 |
-
- We will release our 15K-steps full pretrained model in August.
|
| 57 |
|
| 58 |
## 效果测试 | Evaluation
|
| 59 |
### CCF Sentiment Analysis
|
| 60 |
-
-
|
| 61 |
-
- Since it is hard to acquire open-sourced long sequence level chinese NLP task, we
|
| 62 |
|
| 63 |
|Model|Dev F|
|
| 64 |
|----|----|
|
|
@@ -78,6 +78,22 @@ LongformerZhForMaksedLM.from_pretrained('Longformer_zh')
|
|
| 78 |
|Longformer before training| 14.78|
|
| 79 |
|Longformer after training| 3.10|
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
## 致谢
|
| 82 |
感谢东京工业大学 奥村·船越研究室 提供算力。
|
| 83 |
|
|
|
|
| 11 |
您可以使用谷歌云盘或百度网盘下载我们的模型
|
| 12 |
You could get Longformer_zh from Google Drive or Baidu Yun.
|
| 13 |
|
| 14 |
+
- Google Drive: https://drive.google.com/file/d/1IDJ4aVTfSFUQLIqCYBtoRpnfbgHPoxB4/view?usp=sharing
|
| 15 |
+
- 百度云: 链接:https://pan.baidu.com/s/1HaVDENx52I7ryPFpnQmq1w 提取码:y601
|
| 16 |
|
| 17 |
我们同样提供了Huggingface的自动下载
|
| 18 |
We also provide auto load with HuggingFace.Transformers.
|
| 19 |
```
|
| 20 |
from Longformer_zh import LongformerZhForMaksedLM
|
| 21 |
+
LongformerZhForMaksedLM.from_pretrained('ValkyriaLenneth/longformer_zh')
|
| 22 |
```
|
| 23 |
|
| 24 |
## 注意事项 | Notice
|
| 25 |
+
- 直接使用 `transformers.LongformerModel.from_pretrained` 加载模型
|
| 26 |
+
- Please use `transformers.LongformerModel.from_pretrained` to load the model directly
|
| 27 |
+
|
| 28 |
+
- 以下内容已经被弃用
|
| 29 |
+
- The following notices are abondoned, please ignore them.
|
| 30 |
- 区别于英文原版Longformer, 中文Longformer的基础是Roberta_zh模型,其本质上属于 `Transformers.BertModel` 而非 `RobertaModel`, 因此无法使用原版代码直接加载。
|
| 31 |
- Different with origin English Longformer, Longformer_Zh is based on Roberta_zh which is a subclass of `Transformers.BertModel` not `RobertaModel`. Thus it is impossible to load it with origin code.
|
| 32 |
- 我们提供了修改后的中文Longformer文件,您可以使用其加载参数。
|
|
|
|
| 54 |
- 更多细节可以参考我们的预训练脚本
|
| 55 |
- For more details, please check our pretraining scripts.
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
## 效果测试 | Evaluation
|
| 59 |
### CCF Sentiment Analysis
|
| 60 |
+
- 由于中文超长文本级别任务稀缺,我们采用了CCF-Sentiment-Analysis任务进行测试
|
| 61 |
+
- Since it is hard to acquire open-sourced long sequence level chinese NLP task, we use CCF-Sentiment-Analysis for evaluation.
|
| 62 |
|
| 63 |
|Model|Dev F|
|
| 64 |
|----|----|
|
|
|
|
| 78 |
|Longformer before training| 14.78|
|
| 79 |
|Longformer after training| 3.10|
|
| 80 |
|
| 81 |
+
### CMRC(Chinese Machine Reading Comprehension)
|
| 82 |
+
|Model|F1|EM|
|
| 83 |
+
|---|---|---|
|
| 84 |
+
|Bert|85.87|64.90|
|
| 85 |
+
|Roberta|86.45|66.57|
|
| 86 |
+
|Longformer_zh|86.15|66.84|
|
| 87 |
+
|
| 88 |
+
### Chinese Coreference Resolution
|
| 89 |
+
|Model|Conll-F1|Precision|Recall|
|
| 90 |
+
|---|---|---|---|
|
| 91 |
+
|Bert|66.82|70.30|63.67|
|
| 92 |
+
|Roberta|67.77|69.28|66.32|
|
| 93 |
+
|Longformer_zh|67.81|70.13|65.64|
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
## 致谢
|
| 98 |
感谢东京工业大学 奥村·船越研究室 提供算力。
|
| 99 |
|